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MEMS fabrication: research 
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Surface-micromachined structures and devices 

Kim, Pisano, Muller 
J. MEMS 1992 

Tai S&A 1989 

Sandia National Lab  
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Shkel UC Irvine 

1 mm 

Ikuta Lab 

X-ray lithography 

3D micro and nano structures 

Nano 3D printing 

Focused laser 
deposition 

Glass blowing 
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http://www.microfabrica.com 

3D microstructures by EFAB (foundry) 
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MEMS fabrication: commercial products 
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Principle of micro 
pressure sensor (late 
1980s)  
  
 
 

Pressure sensor 
for engine 
manifold 
  
 
 

Tire pressure 
sensor 
  
 
 

Pressure sensors 
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Texas Instrument DLP 

IEEE Spectrum 1993 

Mirror arrays 
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ADI ADXL-50 

Beyond automotive 
applications: 

Gaming 
3D mouse 

Acceleration (gravity) sensors 
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InvenSense MP67B 
6-axis gyroscope and 

accelerometer 

Bosch Sensortec 
BMA280 triaxial, low-g 
acceleration sensor 

Microsensors: accelerometer, gyroscope, magnetometer, IMU, microphone, etc. 

For smart phones 
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So far, predominantly electronic products 
 -- History 
 -- Compatibility with electronic circuits 
 -- Economy of volume 
 -- MEMS are relatively simple  
 

vs. 
 

12 

MEMS fabrication: next commercial products? 
  Next wave appears to be biomedical 
   -- Small, fast 
   -- Less sensitive to price 
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Microfluidics-based point-of-care systems 

Chin LabChip 2012 

Dolomite 
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Desktop bio analyzers 

Agilent 2100 
Bioanalyzer 

Illumina NeoPrep  

Electrowetting on dielectric (EWOD) 
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•  Asymmetric wetting 
•  Patterned layer on one (or both) surface 

Driving electrode 

Top view Cross section 

Droplet moved by electrowetting-on-dielectric (EWOD) 

CJ Kim 

Droplet 

Top glass plate 

Spacer 
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Biomedical product 
 -- Simple fabrication 
 -- Bio compatibility 
 -- Reliability 
 

Droplet 

Top glass plate 

Spacer 

Dolomite 

vs. 
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MEMS fabrication: where are the real values? 
 -- Compatibility with electronic circuits 
 -- Economy of volume (electronics) 
 -- Small (bio) 
 
 -- When will we absolutely need the ability to make 
complex geometries? 
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An example:  
superhydrophobic (SHPo) surface 

 Strongly repels water 

gas 

Liquid 

Air 

Liquid-solid 

Liquid-gas 

Projected surface area 
(in the specimen window) 

Solid Solid 

Cassie model 
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Water Wettability on Surfaces 

Hydrophobic Hydrophilic Superhydrophobic 

missbongsblog 

  θ > 90° 

θ 
  θ < 90° 
θ 

    θ > 150° 

θ 

e.g. glass, 
PMMA 

e.g. wax, 
Teflon® 

e.g. lotus leaf 

european-coatings Source: www.it.com.cn 

  θ ~ 0° 

roughen roughen 

durabilityanddesign 

e.g. rough glass 

Superhydrophilic 

Cassie state Wenzel state 
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•  General approach: combine hydrophobicity with roughness 

Hydrophobic Material / 
Coating 

Micro/Nano Structures + Super- 
hydrophobic = 

Onda, Langmuir (1996) 

100 µm 

Onda, Langmuir 
(1996) 

5 µm 

Erbil, Science 
2003 

Random structures 

500 nm 

Choi & Kim, 
Nanotechnology 

(2006) 

500 µm 

Pan, JACS 
(2013) 

Controlled patterns 

Polymers/SAM 
 - CFx, CHx 
 - Teflon® 
 - FDTS 
  
Ceramics 
 - rare-earth oxide  
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Commercial SHPo coating 
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Superomniphobic Surfaces 
 

•  Omni- = all 

•  Superoleophobic surfaces cannot repel 
extremely low energy liquids. 
-  e.g., fluorinated solvents (CFx) 

•  Challenge: extremely low energy liquids 
completely wets (θ ~0°) any existing 
material including the most hydrophobic 
coatings (CFx). 

Speed 1/16x!

Video: FC-72 wets a 
superoleophobic 
surface instantly!

Liquids	
 γ @25°C 
(mN/m)	


FC-72	
 10.0	


HFE 7100	
 13.6	


FC-40	
 16.0	


Hexane	
 18.0	


Methanol	
 22.0	


Bromine	
 41.0	


Water	
 72.0	


Lowest 
known"
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Requirement #1: Liquid Suspension 

•  Suspension depends on meniscus angle formed at the 
edge of the micro/nanostructures. 

–  E.g., common structures for artificial SHPo surfaces 

•  Liquid suspension analysis is based on force balance. 

Micro-posts" Micro-gratings"

θ 
θ 
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Consider vertical microstructure. 
 

If the liquid wets the material, i.e., θ < 90° 

γ γ γ γ 

θ < 90° 

à Cannot suspend à Wetting 
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Consider re-entrant microstructures. 
 

If the liquid wets the material, i.e., θ < 90° 

γ γ γ γ 

θ < 90° 

à If the wetting is moderate, suspension is possible 
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Still consider re-entrant microstructure 
 

If the liquid wets the material strongly, θ ~0° 

γ γ γ γ 

θ ~ 0°  

à Cannot suspend à Wetting 
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γ γ γ γ 

θ ~ 0° 

à Suspendedà Resist wetting 

Consider doubly re-entrant microstructures. 
 

If the liquid wets the material strongly, i.e., θ ~ 90° 

28 
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Superhydrophobic
Superoleophobic
Superomniphobic
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Requirement #2: Small Solid Fraction ϕs 

How small ϕs should be? 
 

Conclusion: 
When ϕs < 6%, 
completely wetting 
liquids can be 
super-repelled. 
 

θ = 130°  

θ = 0°  

Liquid 
Repellency"

~6%"

Plot Cassie model w/ θ = 0° to 130° (assuming ϕs + ϕg = 1)  

150° 

Liu & Kim, Science, 2014"

50%"

90° 
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Super-repellency to “All” Liquids Confirmed 

•  Demonstrate with SiO2 surface (θ < 10° for water) 
•  Doubly re-entrant structures for liquid suspension 
•  Micro-posts to have ~5% solid fraction 

Liu & Kim, Science (2014)"

100 μm!

5 μm!

5 μm! 1 μm!

~85°!

30 

Super-repellency to “All” Liquids Confirmed 
Liquids Rolling 

Note: Doubly re-entrant posts exist only in the central square area. 

Liu & Kim, Science (2014)"
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SHPo drag reduction 
 -- The most anticipated application of SHPo surface 
 -- Since early 2000s 
 -- Numerous publications 
 -- Some experimental success in lab tests 
 -- So far, no success in field conditions. Why? 
 
 -- Should work while fully submerged under water 
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•  How robust is the surface 
against becoming wet? 

•  How close is the surface to the 
ideal scenario? 

•  etc.  

“Effective slip” by a lubricating layer 

Possible scenarios 
1. Inject gas over the surface 2. Water-repellent surface 

•  How energy efficient? 
•  Robust against dynamic 

conditions? 
•  Worth the complication? 
•  etc. 

Ceccio, Ann Rev Fluid Mech 2010) 

Center for Smart Control of Turbulence, Japan 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

Gas cavity 
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Will SHPo surfaces ever be practical for drag reduction? 

Q1. How to achieve slip large enough for 
regular (macro) fluidic systems? 
Q2. How to maintain a stable gas layer 
under adverse (realistic) conditions? 
Q3. How to manufacture economical SHPo 
surfaces (mass production)? 
Q4. How to overcome surface degradation 
(e.g. fouling)? 

       Q1 and Q2 are fundamental. 
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•   To use a liquid slip for a drag reduction in a regular 
(macroscale) fluidic system (e.g. boundary layer ~ 1 mm), a 
giant slip length (> 100 µm) is desirable 

•   To design a SHPo surface of such a large slip, the correlation 
between surface parameters and slip length should be 
understood first 

•   Early experimental studies did not provide conclusive 
information about the effect of surface parameters on slip 
length 

•  How about in turbulent boundary layer flows? 

How to achieve slip large enough for regular (macro) fluidic 
systems? 

Question 1 
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Theory of slip length on patterned surface 

Analytical solution on grates (Philip ZAMP 1972; Lauga JFM 2003) 

Scaling law on posts at a high gas fraction (ϕ > 0.7) (Ybert PoF 2007) 

δ
L
=
0.325
(1−φ)

−0.44
Coefficients (empirical) 

δ
L
= −
1
π
log cos(πφ

2
)

"

#
$

%

&
'

Slip length 
Pitch 

Gas fraction 

- According to the theories, pitch and gas fraction are two important 
surface parameters determining slip length 

Lee, Choi, Kim, PRL 2008 
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- Since previous experimental reports deviated from the theoretical 
predictions, we performed experiments to test the theories 

Lee, Choi, Kim, PRL 2008 



19 

37 

•  Pitch effect (gas fraction = 98%) 

Note: Slip length could not be increased indefinitely. It is 
limited by the condition for the transition from a de-wetted 
to a wetted state (i.e., Cassie-to-Wenzel transition) 

δ increases linearly with a pitch 

•  Gas fraction effect (pitch = 50µm) 

δ increases exponentially with a gas fraction 

Lee, Choi, Kim, PRL 2008 
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Comparison of published data 
      

Linear-scale Log-scale 

Kim, APS-DFD 2009 
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!

!

Drag reduction in turbulent boundary layer flows 

Park, Sun, Kim, JFM 2014 
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Drag on SHPo surface to as low as 25% of that on the 
smooth surface obtained, i.e., 75% reduction! 
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0.4

0.6

0.8

1.0

channel flow 
(Daniello et al. 2009) 

     100 µm pitch 
      50 µm pitch 

channel flow (Woolford et al., 2009) 

D
ra

g 

Gas fraction 

Park, Sun, Kim, JFM 2014 

Results 
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Summary  

 
Fabrication technologies of MEMS has a irreplaceable value to 

experimentally study some topics that are otherwise impossible.  


