

포스트 코로나(Post COVID-19), 유망 기계기술 및 제언

김희태. 김철후. 오승훈. 이운규

- ❶ 서론 : 경기 전망
- 2 코로나19에 따른 변화 양상
- ③ 포스트 코로나 시대의 유망 기술
- 4 결론 및 시사점

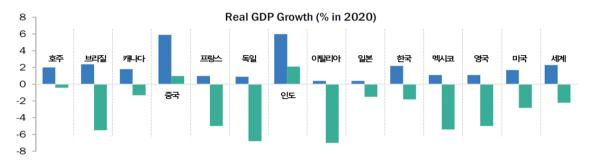
포스트 코로나(Post COVID-19), 유망 기계기술 및 제언

김희태, 김철후, 오승훈, 이운규

② 코로나19에 따른 변화 양상 / 4

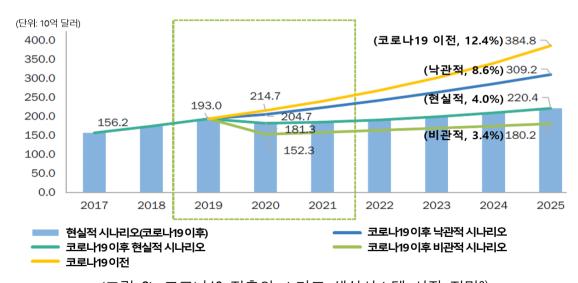
❸ 포스트 코로나 시대의 유망 기술 / 8

₫ 결론 및 시사점 / 15



기계기술정책 원문 찾아보기

- 한국기계연구원 홈페이지-기술지원 탭-기계기술정책
- ② 웹페이지: https://www.kimm.re.kr/pr_policy
- ※ 웹페이지에서 다운로드 시, 정기구독을 신청하시면 이메일로 받아보실 수 있습니다.


1. 서론: 경기 전망

- □ (경기 전망) 코로나19로 세계는 건강과 경제에 동시에 악영향을 미치는 위기를 맞이하였으며, 글로벌 경제와 산업 성장의 침체 및 불확실성 증대
 - 보건·의료 분야뿐 아니라, 이동 제한, 글로벌 공급망 마비, 경제활동 감소에 따른 수조 달러 손실로 경기 침체 유발

<그림 1> G20 국가의 수정된 GDP 전망(좌: 이전 전망, 우: 실질 GDP 성장)1)

- 글로벌 공급망 중단, 인력 이동 제한 등의 영향으로 상당수 제조공장을 임시 폐쇄하였고, 생산이 지속될 수 있는 기술 개발에 관심 증가
 - 대표적인 미래 유망 기계기술 분야인 스마트 생산시스템도 코로나19 영향으로 전망치가 하향 조정됨
 - * 스마트 생산시스템은 4차 산업혁명의 제조업의 표상이며, 협동로봇, 디지털 트윈, 기계 상태 (안전) 진단 등의 기술을 포괄

<그림 2> 코로나19 전후의 스마트 생산시스템 시장 전망2)

¹⁾ MarketsandMarkets, "COVID-19 Impact on Smart Manufacturing Market", 2020

²⁾ 전게서

- Marketsandmarkets(시장 분석 기관)에서는 스마트 생산시스템 주요 분야의 성장률 전망도 코로나19의 영향으로 하향 조정

				_						
$\sim \pi$	15	ᄉᇚᅜ	생산시스템	스ㅇ	브아이	ㅋㅋ.	저.ㅎ	저마(다의:	10어 다리	٥/۵۱
\ <u></u>	1/			一正	군아의	ᅶ도ᄓ	1111 	ないるなけれ		. /0/

구분		2019	2020	2025	2020-2025 CAGR (증감, %p)
청도 그부	코로나19 전	0.7	0.9	5.1	40
협동 로봇	코로나19 후	0.7	0.8	2.6	26.5 (▽13.5)
디지털트윈	코로나19 전	2.2	3	19.7	45.6
	코로나19 후	2.2	2.6	7.6	23.8 (▽21.8)
산업용 3D 프린팅	코로나19 전	2	2.6	8	25
	코로나19 후		2.2	3.9	11.8 (▽13.2)
기계 상태	코로나19 전	2.4	2.6	3.7	7.1
(안전) 진단	코로나19 후	2.4	2.5	3.3	5.6 (▽1.5)
플랜트	코로나19 전	5.4	6	10.4	11.8
	코로나19 후	5.4	5.5	6.5	3.3 (▽8.5)

- * 'Marketsandmarkets는 2020년 전망에 코로나19에 따른 부정적 영향을 가장 크게 반영하였으며, 이후 동 업체 자체 기준으로 연평균 성장률을 제시하여 산출
 - 전문기관별 하향 성장치 전망에도 불구하고 4차 산업혁명 관련 기계기술 등 유망 기계기술은 발전 속도가 다소 정체될 뿐 큰 흐름은 현재까지 진행 중인 것으로 분석3)
- □ (배경) 불확실성의 시대에 코로나19 이후 국가 성장동력 조기 확보를 위해 준비해야할 유망 기술을 발굴하고, 미래 사회에 대한 전략적인 대응 필요
 - 코로나가 수요(예: 이동 제한)와 공급(예: 글로벌 공급망 약화)을 동시에 위축하며 어려운 국면을 맞고 있지만, 코로나19 이후 시대에 대비한 혁신 기술 선점으로 조속한 경기회복이 필요함
 - 4차 산업혁명으로 대두되는 '큰 것'을 관리하는 시대에서 점차 '작은 것'을 관리하는 시대로의 흐름은 속도의 차이가 있지만 여전히 진행 중

³⁾ 한국기계연구원 내부 전문가 그룹 의견 정리

- 코로나 이후의 제조기업 회복을 위해 기업별 특성에 맞게 차별화된 유망 기술을 발굴·준비해야할 시기
- 본고는 코로나19 發 기회요인 고찰을 통해, 향후, 산업 변화 방향과 혁신 동인을 분석하고 주목받는 유망 기계기술을 발굴·점검
 - 정책기관의 발간 보고서 분석, 기계기술·정책 분야 전문가 의견을 종합하여 유망 기계기술을 발굴하고 시사점을 도출

2. 코로나19에 따른 변화 양상

- □ (환경 변화) 민간 주도의 와해적 기술 혁신 중심인 4차 산업혁명과 선진국 주도 규제 기반의 신기후체제 등 메가트렌드가 '코로나'라는 요인과 결합
 - (기술) '코로나'이슈는 4차 산업혁명 등 메가트렌드 관련 핵심 동인 기술들의 우선순위를 조정하는데 영향을 가져옴
 - 코로나19로 주목받는 기술은 완전히 새로운 것이라기보다, 기존 메가트렌드 에서 이미 큰 과심을 받던 기술에 안전에 대한 니즈가 반영
 - * 원격 의료, 현장형 감염병 진단키트, AI 융합 로보틱스, AI-PHM, 스마트 공장, AR·VR 기반 맞춤형 체험과 교육, 블록체인 등은 4차 산업혁명 관련 여러 차례 유망 분야로 언급
 - 초연결, 초지능으로 대표되는 4차 산업혁명 연계 기술이 발전 중이며, '안전'에 대한 범세계적 요구가 더해져 R&D 우선순위가 재설정 되고 있음
 - * 공유경제, 수송에너지 효율화 관련 연구가 정체되고 자율화, 무인화, 시스템 안전 관련 기술에 대한 연구가 확대될 조짐
 - * 수송시스템이 정지 수준으로 위축됨에 따라 비대면 자율주행 등 자율화 기술수요 증대
 - 비대면·디지털 기술 전환이 가속화되고, 식량, 자원, 소재·부품 등에 '안전' 요인이 더해지면서 기술 협력 및 유합은 더욱 중요해짐

- (뉴노멀: 사회 관점) 장기간에 걸친 사회적 논의가 필요했던 '재택 근무', '기본 소득', '원격 교육', '무인·자동화 공장' 등 글로벌 중장기 이슈에 대해 시범 사업 성격의 모델을 국가적으로 시도하면서 공론화
 - (비대면 사회화) 많은 국민이 온라인 개학, 재택근무를 경험하는 등 '강제 디지털 전화'을 통해 비대면 기술을 체감하며 적응
 - * 온라인을 통한 쇼핑, 교육, 회의, 의료 등이 빠르게 활성화되고, 일손 부족에 따라 농업, 서빙, 배송 등의 분야에서도 로봇 수요가 증대(로봇 커피숍 등)
 - (위험대응 일상화) 사회활동, 업무공간에 위험관리 체제 도입·구축 등 상시 대응 체제 확산

- (이동축소, 로컬화) 바이러스에 대한 두려움으로 이동 축소, 로컬푸드에 대한 수요로 이어지고, 유기농 식자재 및 대체육에 대한 관심 증대
- (뉴노멀: 산업 관점) 보호무역주의, 수송시스템 붕괴 등 글로벌 공급망 약화로 전략품목 중심 국가 자생 역량 강화 및 제조업 리쇼어링 추세가 확대 되고 있으며 사회변화에 따른 비대면 산업이 부상하고 있음
 - (新자급자족화) 글로벌 공급망 약화, 국경 폐쇄에 따른 경제 위축과 수요 둔화, 산업수요 감소에 따른 불확실성 심화로 산업 전반에 위기감 고조
 - * 중국·일본발 공급망 문제가 아닌, 글로벌 공급망 충격이 발생되고 있으며 소비 경제 악화, 경제성장 둔화, 기업 부실화 등으로 이어지며 세계 경기 악순환 전망
 - * 부정적 영향을 받은 산업이 많지만, 유통, 교육, 통신, 제약 산업은 기회 포착·활용
 - (비대면 산업 확대) 비대면 수요 증대에 따라 로봇, 자동화, 디지털 기술 기반의 비대면 산업 부상
 - * 비대면 산업 예시: 로봇 커피숍, 무인 택배, 드론 배송, 무인 공장, 자율주행, 스마트 공장 등
 - (예방중심 의료) 환경·바이오 오염 모니터링, 예방중심의 헬스케어를 위한 진단기기, 백신 개발 등이 확대
- (뉴노멀: 정부 관점) 국가차원의 총체적 대응 요구에 따른 정부역할 강화
 - 과거 건설업 중심으로 전개되어온 경기부양책도 기한이 있는 재난지원금 등으로 변화하면서 단기 기본소득과 유사한 정책을 실증·체감
 - * 코로나로 일손이 부족하자 농업, 서빙, 배송 등의 분야에서 로봇 수요가 급증하고, 긴급 재난지원금 보급, 지역화폐가 폭넓게 도입되었으며 블록체인 기반 인증기술도 확산
 - '사회적 거리두기', '온라인 개학', '마스크 통제' 등 신속하고 총체적인 대응을 원하는 분야에서 규제를 동반한 강력한 정책에도 국민 부응
 - * 'K-방역' 등 국가적 정책 성공은 국가 신성장동력 및 국민 지부심과 연결
- □ (국가별 정책) 주요국은 내부적으로는 경기 부양책을, 외부적으로는 강대국 간 힘겨루기에 돌입하였고, 우리나라는 '한국판 뉴딜' 중심으로 돌파구 모색
 - 주요국은 전례 없는 경제 위기에 대응하기 위하여 금리인하, 양적완화, 대규모 기업지원 등 과감한 경기 부양책을 연일 발표 중

- (미국) 전염병 대응 긴급 패키지 의회 통과(3.6.), 국가 비상사태 선포(3.13.), 2.2조 달러 부양책 패키지 최종 승인(3.27.), 코로나 추가 부양책 승인(4.24.)
 - * 한국, 호주 등 9개국과 통화 스와프 체결(3.19.), 임시 FOMC 개최로 무제한 양적완화 개시(3.23.)
 - * 리쇼어링 유도를 위한 제조업 지원 자금 6천억 달러 배정 및 국립제조업원(National Institute of Manufacturing) 신설 계획 발표
 - * 인프라 현대화 패키지 등 4차 경기부앙책(건설플랜트, 엔지니어링, 신재생에너지 등) 검토 중
 - * 에너지 부문 기업 지원을 위한 국가치원의 기업 지분 매입 고려 중(4.24.)
- (유럽) 유로존 합동 250억 유로 EU 기금 마련(3.10.), 5천억 유로 규모의 부양 패키지 합의(4.9.), 대규모 경제회생기금 설치 합의(4.23.)
 - * ECB, 올해 자산매입 규모 1.1조 유로로 확대하고, 7500억 유로 규모 긴급 채권 매입 발표
 - * 가치사슬 전략의 변화로 인정성을 중시하는 'Just in Case' 대두되며, 부품 공급처의 다각화 중
 - * 디지털화가 급진전되며 3D프린팅 기술을 통한 생산지동화 촉구(Fortech社 CEO)
 - * 지동차 신업 육성책으로 독일은 폐치보조금을 고려하고 있으며, 중국산 부품 의존 대체 노력
- (일본) 금융 지원 1조 6천억 엔과 직접 지출 4,300억 엔 규모의 경기 부양 계획 발표(3.10.), 「신형코로나바이러스감염증대책본부」설치(3.26.)
 - * <긴급지원단계>정책: 감염 확대 방지책, 치료약 개발고용 유지 등 82.5조 엔 지원
 - * </자 회복단계>정책: 경제활동 회복, 생산거점 국내유턴, 공급망 인정화 등 25.7조 엔 지원
 - * 부품소재 분야 국내회귀정책(현재 효과는 미비함)으로 중국에 편중된 공급망 개선 노력
- (중국) 소비진작책 및 25조 위안에 달하는 프로젝트 계획 발표(3.3.)
 - * 新 SOC 7대 분이에 2조 위안 투자 결정: 5G, 특고압, 고속철도, 데이터 센터, AI, EV충전소 등
 - * 지방정부의 산업육성 정책으로 성시 자치구별 중점 프로젝트가 22,351건, 약 7.6조 위안 규모로 추정되며 스마트시티, 인프라, 의료바이오, 민생, 환경 분야 중심으로 계획
- (그 외) 세금 감면, 대출 확대, 인프라 사업 지원(건설기계, 통신장비 기술), 소비 진작, 의료보건 역량 강화, 취약계층 지원 등 정책도 병행
 - * (러시아) 경제발전지속을 위한 방안 발표, (UAE) 내수용 제품 수입관세 20% 횐급, (이란) 피해 기금 50억 달러 편성, (남아공) 기준금리 2차례 인하, (알제리) 국가보건안전청 신설 발표 등
 - * (호주) 첨단산업단지·인프라 구축 등 제조업 육성, (아세안) 선진국의 탈중국 리쇼어링 정책발 전기전자·지동차·화학·의약 등 생산설비 유치 노력, (UAE) 스마트팜 기업 유치 기금 조성 등
- 우리나라는 기준금리 인하, 기업자금 지원, 시장 안정화 장치 마련에 집중 하고 있으며, 긴급재난지원금으로 민생 안정에도 주력하고 있음

- (재정) 코로나19 파급 영향 최소화와 및 조기 극복을 위한 민생·경제 종합대책 발표(2.28.), 11.7조 원 추경 편성(3.4.), 금리 50bp 인하(3.16.), 역대 최대 35.3조 원 3차 추경 편성(6.3.) 추진
 - * 업종별 긴급 지원방안(2차-3.18, 3차-4.1.), 민생·금융 안정(3.24.), 고용 및 기업 안정(4.22.)
- (한국판 뉴딜) 디지털화와 비대면 가속화를 중심으로 디지털 기반 일자리 창출 및 경제혁신 촉진 프로젝트
 - * ①데이터·5G·AI 등 디지털 인프라 구축, ②비대면 산업 집중 육성, ③SOC의 디지털화 등 3대 영역 프로젝트가 중심이 되며 세부적으로 10대 중점 추진과제⁴⁾ 추진
- (통화) 코로나19 피해 업체 대출 지원(2.27.), 금리 인하(3.16.), 미국과 600억 달러 규모 통화스왑(3.19.), 금융안정특별대출제도 의결(4.16.)

^{4) 10}대 중점과제: 데이터 全주기 인프라 강화, 국민체감 핵심 6대 분야 데이터 수집·활용 확대, 5G 인프라 조기 구축, 5G+ 융복합 사업 촉진, Al 데이터·인프라 확충, 全산업으로 Al 융합 확산, 비대면 서비스 확산 기반 조성, 클라우드 및 사이버안전망 강화, 노후 국가기반시설 디지털화, 디지털 물류서비스 체계 구축

3. 포스트 코로나 시대의 유망 기술

- □ (1차 스크리닝) 코로나 發 '뉴노멀'을 중심으로 로봇 기술, 상시진단 기술 등이 적용되면서 촉발되는 변화 추세를 선정
 - (비대면화) 온라인, 로봇, 스마트화 기술을 중심으로 변화
 - (사회) 사회적으로는 온라인/실감형 교육, 오프라인 무인 쇼핑/외식, 호텔/병원 등의 무인 물류, 로봇 응용, 개인 보안 분야 등
 - (산업) 자율·협업 공장(스마트/무인 공장), 협동로봇, 원격 제어 등
 - (위험대응 일상화) 상시진단, 모니터링, 제어 기술 중심으로 변화
 - (사회) ICT 기반 상시 진단 시스템, 위험물질 개인 모니터링 기기 등
 - (산업) 현장형 진단기기, AI-PHM, 로봇기술 적용 확대, 자율·협업 공장
 - (이동축소, 로컬화) 자율주행 수송기술(병원, 호텔 등), 무인 택배, 스마트 홈 공장, 스마트 홈 팜 등
 - * 스마트 홈 X : 홈은 기정이나 로컬을 의미 (예: 도시 건물형 스마트팜도 '스마트 홈 팜'에 포함)
 - (예방 중심 의료) 환경·바이오 오염 모니터링, 개인 맞춤형 헬스케어 진단 기기, 공기질 관리 시스템 등
 - (국가 신자급자족화) 스마트 공장, 협동로봇 등 자율화 분야와 수요-공급 협력체계 기반 전략품목 기술 자립화 분야 투자 확대
 - 코로나 발 '뉴노멀'에서 우선순위가 다소 밀리거나 정체된 분야(공유경제 관련 분야 등)도 '안전' 요인 보강하여 재정비 전망

□ (2차 스크리닝) 6대 기계산업5) 분야를 중심으로 유망 아이템들을6) 점검하고 관련 핵심 기술을 분석하여 유망 기술을 도출

① 제조 분야

- 비대면화로의 제조공장/장비의 스마트·무인화 및 보호무역주의 강화, 글로벌 밸류체인의 훼손에 따른 리쇼어링 동인 아이템을 추출

<표 2> 제조 분야 대표 유망기술

주요 아이템	정의	관련 기저기술 (★는 기계분야 기저기술)	
(범례) ① 비대면화, ②	위험대응 일상화, ③ 이동축소/로컬화, ④ 예방중	심 의료, ⑤ 국가 자급자족화	
스마트팩토리 / 무인공장	기존 제조시설의 생산성 향상, 다품종·소량생산 대응 및 비대면 자율작업 등 ICT 기반의 자율제조공장화 기술	CPS*, 로봇기술/제어*, 공간감지, AI-PHM*, 로봇인터페이스(HCI)* 등 (AI-PHM은 아이템이면서 기저기술 역할 수행)	
①, ②, ⑤		기계기술 막을 干성/	
인공지능 기반 건전성 관리 (Al-PHM)	인공지능이나 CPS 기반 기술을 활용, 제조장비나 시스템에 센서를 부착하여 실시간 상태 진단·모니터링하는 기술	센서/센싱*, 기계특성 기반 인공지능*, 시뮬레이션 기술 등	
①, ②, ⑤	(PHM, Prognostics and Health Management)		
(인간) 증강기술	인공적 기술(기계, 전자, 생명공학 등)을 활용, 인간의 능력을 향상(증강)시키는 기술	뇌·기계인터페이스(BCI), 신체증강 웨어러블 기술*	
①, ②, ③		및 인터페이스* 등	
협동로봇	제조공정 내에서 인간과 상호작용하며	다자유도 로봇*, 공간감지,	
①, ②, ③	단순노동, 위험작업을 대신해주는 로봇	로봇인터페이스(HCI)★ 등 	
차세대 디스플레이	사회적 거리두기로 인한 다양한 비대면 문화 콘텐츠·교육, 원격근무 등에 활용되는	입체형 스마트소자 패키징*, 플렉시블 기술*,	
①, ②	차세대 디스플레이 제작 기술	OLED/mLED 제작기술* 등	

⁵⁾ 한국기계연구원 중장기발전계획(KIMM2030) 수립('19.8.) 과정에서 분석한 주요 기계산업 중심: 제조, 교통·물류, 환경, 에너지, 보건·의료, 공공·안전

⁶⁾ 전문가 의견 및 KISTEP 보고서(포스트 코로나 시대의 미래전망 및 유망기술(2020.4.)) 등을 분석하여 도출

② 교통·물류 분야

- 세계적 봉쇄조치, 이동제한으로 인한 국가 간 물동량 감소 및 사회적 거리두기로 인한 온라인·비대면 거래의 증가
- 교통의 언택트(Untact) 문화 확산에 따라 기존 대중교통 활용이 기피되고, 개인 교통(Personal Mobility) 및 자율주행 기술 응용 확대

<표 3> 교통·물류 분야 대표 유망기술

주요 아이템	정의	주요 관련 기술 (★는 기계분야 기저기술)
(범례) ① 비대면화, ②	위험대응 일상화, ③ 이동축소/로컬화, ④ 예방중	심 의료, ⑤ 국가 자급자족화
특수목적용 자율운반차량 ①, ②, ③	감염병 의심 환자의 병원·격리장소 이송과 호텔 등 주요시설의 물류용 자율주행차량	자율주행*, AI, 차량용 센서* 및 네트워크 기술, 배터리 기술 등
개인용 스마트 모빌리티 ①, ②, ③	대중교통과 연계 없이 목적지에 도달할 수 있는 소형 모빌리티(전기자전거, 전동휠 등)	초소형모빌리티 [*] , 자율주행 [*] , 배터리 기술, 블록체인(인증기술) 등
교통 상황 맞춤형 신호제어 ①, ②, ③	사용자의 비접촉·신속 이동을 위한 신호제어 등 교통 솔루션	교통 빅데이터, 블록체인, 통합플랫폼 기술 등
물류·배송용 자율주행 및 자율작업 기계 ①, ②, ③	(자율주행) 물류센터 내, 고객-배송기사 간 언택트를 위한 로봇·드론 (자율작업) 택배, 물류센터 등에서 인간을 지원하거나 자율적으로 작업하는 로봇	지율주행*, 로봇(드론)*, 경로최적화* 및 제어 기술 등
지능형 물류관리 시스템 ①, ②, ③	물류센터부터 아파트 무인택배시스템까지의 전 과정을 지능화하여 소량 다품종 다빈도 화물처리 지원	자동화(협동)로봇*, 자율주행*, 데이터솔루션 기술 등

③ 에너지 분야

- (신)재생에너지의 저장·변환 중심의 에너지 자급자족 기술과 퍼스널 모빌리티 등 다양한 수송기계 보급 확대에 따른 에너지 공급 인프라 기술 확대
- 지능형 무인플랜트 등 비대면성, ICT 기술의 에너지 산업 적용 확대

<표 4> 에너지 분야 대표 유망기술

주요 아이템	정의	주요 관련 기술 (★는 기계분야 기저기술)	
(범례) ① 비대면화, ②	위험대응 일상화, ③ 이동축소/로컬화, ④ 예방중	심 의료, ⑤ 국가 자급자족화	
수소액화플랜트 및 인프라	재생에너지원의 액화수소화로 대규모·장기간 저장 및 공급이 가능하게 하여 수소 엔진, 연료전지 등에	수소액화 공정기술*, 액체수소 활용기술*, 플랜트 건설 및	
2	산업적으로 활용	운영기술* 등	
에너지 저장·변환 (ESS, P2X)	신재생에너지의 미활용 에너지를 대용량, 친환경적으로 장기간 저장하고, 미활용 전기에너지를 연료화하여 저장하는 기술	고효율 터보기기 기술 [*] , 메탄 생산 및 액상연료 전환 기술 [*] , 부하변동 최적 운전 기술, 연료-열-전기 전환	
2, 3, 5		· 최적화 기술 [★] 등	
이동체 에너지 공급 시스템	수소엔진 파워팩 기반의 드론, 중소형 모빌리티에 에너지를 공급하는 시스템	가스연료 분사기 기술*, 흡기 부스팅 기술*, 배기재순환 기술*, 엔진	
2, 3		매핑기술 * 등	
지능형 무인플랜트	기존 플랜트에 ICT 기술을 접목하여 실시간으로 공정 및 이벤트를 관리하고 데이터에 접근할 수 있는 자동화 플랜트	Al-PHM*, 지능형 빅데이터 분석·활용, 데이터 플랫폼 등	
①, ②, ⑤			
전기차 고속/무선충전	전기차의 원활한 이용을 위한 고속/무선 충전 인프라 구축 및 운영 기술	전력 변환 기술, (무선)전력 공급/운영 기술(WPT)*, 원격검침	
2, 3		시스템, 네트워크 기술 등	

④ 환경 분야

- 물, 공기, 토양 등 일상생활 환경의 오염을 상시 진단하는 개인형 오염 모니터링 기기 요구 증대
- 각종 의료폐기물 발생 증가, 전염병 확산 등 통합 생활환경 관리 기술

<표 5> 환경 분야 대표 유망기술

주요 아이템	정의	주요 관련 기술 (★는 기계분야 기저기술)	
(범례) ① 비대면화, ②	위험대응 일상화, ③ 이동축소/로컬화, ④ 예방중	심 의료, ⑤ 국가 자급자족화	
건물 공기질 통합관리시스템	건물 내 바이오파티클, 미세먼지, 온습도 등을 포함한 공기의 질을 통합적으로 관리·제어하는 시스템	미세먼지 질량 계측센서*, 정전 미세먼지저감*, 공기청정 성능평가 기술*, AJ, 빅데이터 등	
①, ②, ③, ④			
건물형 스마트팜	분산발전 기반 건물형 스마트팜을 위한 에너지·환경 통합제어 시스템	발전시스템 설계/해석*, 저공해 가스엔진*, 온습도 제어*, BEMS 연계 기술*,	
1, 2, 3, 5		수처리 기술* 등 	
Nano-WATCH ⁷⁾	나노기술을 기반으로 물, 공기, 토양, 화학물질, 인체 정보를 정밀하게 모니터링하고 쾌적하게 유지해주는	물질 검출 및 물성 측정 기술, 환경 검출 및 인간-기계 인터페이싱	
①, ②, ④	개인맞춤형 환경관리 시스템	나노소자 제작기술 * 등	
폐기물 처리 로 봇	산업 폐기물, 환자·의료진이 사용한 의료 폐기물 등 다양한 폐기물에 대해 운반, 살균, 폐기를 지원하는 로봇	로봇 제어*, 자율주행*, 자율작업*, 배터리, AI 등	
①, ②, ③, ④ ————————————————————————————————————			

⁷⁾ WATCH: Water, Air, Terrestrial, Chemicals, Human

⑤ 보건·의료 분야

- 기존 치료 중심의 의료 시스템에서 예방·관리 중심의 헬스케어 시스템으로의 전환 수요 확대
- 신속하고 품질 신뢰성이 보장되는 진단기기의 수출 동력화('K-방역' 산업 등)

<표 6> 보건·의료 분야 대표 유망기술

주요 아이템	정의	주요 관련 기술 (★는 기계분야 기저기술)	
(범례) ① 비대면화, ②	위험대응 일상화, ③ 이동축소/로컬화, ④ 예방중	심 의료, ⑤ 국가 자급자족화	
개인맞춤형 건강진단 및 관리기기	언제 어디서나 개인 생체정보를 상시 모니터링하고 관리해주는 맞춤형 건강관리 기기	센서/센싱*, 웨어러블 기기 제작*, UI/UX, 데이터처리 등	
①, ②, ④	2 2		
현장형 진단기기	다중 감염성 병원체의 신속 현장진단을	시료 전처리, 바이오칩·진단센서 설계/	
1), 2), 4)	위한 보급형 진단소자 및 기기	제작*, 저전력 기술* 등	
의료·진단기기 신뢰성 기술	진단키트, 마스크 등 품질의 평가기준 개발 및 신뢰성 평가 기술	다양한 진단기기별 신뢰성 평가기준 설계기술*, 양산	
1, 2, 4, 5	X E-10 0/1 / 1E	장비 신뢰성 기술★ 등	
감염병 확산 실시간 모니터링·예측	감염 발생경로 등 빅데이터 기반의 감염병 확산 모- 터링·예측 기술	빅데이터, 위치추적 기술 등	
①, ②, ④			
미래형 건강검진 버스	만성질병과 전염성 질병에 대해 실시간 현장 방문·진단 및 질병 확진 시 환자 이송까지	(만성·중증·전염성) 질병 진단기기*, 현장진단용	
①, ②, ④	기능한 차세대 건강검진 버스	건강버스 등	

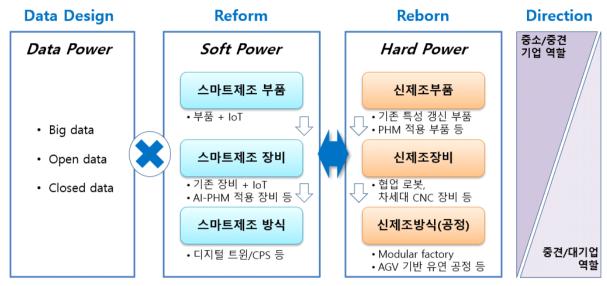
⑥ 공공·안전 분야

- 화상회의, 재택근무, 온라인 교육 등 ICT 적용 확대에 따른 국가공공 비대면 시스템 구축
- 기계시스템 실시간 상태진단 등이 가능한 지능형 안전기술 확대

<표 7> 공공·안전 분야 대표 유망기술

주요 아이템	정의	주요 관련 기술 (★는 기계분야 기저기술)				
(범례) ① 비대면화, ②	(범례) ① 비대면화, ② 위험대응 일상화, ③ 이동축소/로컬화, ④ 예방중심 의료, ⑤ 국가 자급자족화					
고위험 기계시스템 지능형 안전기술	기존 안전기술에 ICT를 융합하여 대형 사고 발생위험이 있는 항공, 선박 등 인프라의 사고 예방 및 손실 최소화하는	AI-PHM*, 로봇기술/제어* 등				
①, ②, ⑤	기술					
개인 맞춤형 재난 대응 기기	재난 시 최적의 동선(감염병, 화재, 붕괴 등 재난지역 우회)을 계산하고, 재난 확산	센서/센싱*, 웨어러블 기술*, 빅데이터 기반 예측기술, 저전력 설계				
①, ②, ④, ⑤	경로를 시전에 예측하는 기술	기술 등				
군집·협업이 가능한 자율 건설기계	건설기계의 자율 주행·무인 작업 및 군집·협업이 가능한 기술	험지 경로 추종 기술 [*] , 장애물 충돌 회피 기술 [*] ,				
①, ②, ⑤		지능형 군집협업 기술* 등				
노후 공공 인프라 수명연장·모니터링	노후 공공인프라(교통, 발전 등)에 ICT 기반 실시간 관리체계 구축	센서/센싱*, AI-PHM*, 빅데이터 기술 등				
①, ②	글시인 인디세계 국 	극테에디 기골 6				
국가 공공 비대면 시스템	국가 민원업무, 공공회의 등에 개인 보안이 확보된 비대면 서비스 적용 확대	위조 방지·인증 기술, 암호화, 회상송신 기술 등				
①, ②, ③	포한어 극포한 미대한 시미드 극중 됩내	_{디오피,} 되어하는 기술 등				

4. 결론 및 시사점


- □ 기후변화 대응 기술, 기후변화 및 디지털 전환 기술 순으로 진행되어 온 융합기술 트렌드는 '기후변화, 디지털 전환 및 안전 기술'로 융복합화 중
 - 교토 의정서의 연장선인 '신기후체제'와 인공지능 기반 '4차 산업혁명' 패러다임 전환 하에 '안전·위험관리' 기술도 병합되어 기술 요구조건의 복잡성을 높이는 혁신 기술을 요구하고 있음
 - 4차 산업혁명이 제시한 청사진에서 일부는 우선순위가 앞으로 올라섰고, 일부는 정체 양상을 보이고 있으나, 정체된 분야도 '안전·위험관리' 기술이 병합되며 빠르게 진화할 것으로 전망
 - 로봇, 인공지능 기반 예지보전(AI-PHM), 의료·진단기기 신뢰성, 공장 자율화 기술 등 비대면 관련 기술의 중요도가 높아짐
 - 공유경제 등 정체된 분야도 '안전' 기술 분야와 결합하여 포스트 코로나 시대를 준비할 것으로 전망

〈표 8〉 포스트 코로나에 따른 기계기술의 방향성 분석

구분	1차 산업혁명	2차 산업혁명	3차 산업혁명	4차 산			
, =		24 26 40	ST LETS		포스트 코로나		
시기	1784년~ (영국)	1870년~ (미국)	1969년~ (독일, 일본)	2016년~ (다보스포럼)	2020년~		
혁신 부문	증기기관, 생산설비	전력, 노동 분업	반도체, IT	Al, loT, Big data	상시 안전, 비대면		
기계산업 키워드	기계화	양산화	자동화	자율화	위험·안전 관리		
기계산업 혁신 주도 분야	기계 (기술/산업)	기계	기계, IT	정보통신, 소재	AI-PHM, 로봇		
					\rightarrow		
	초정밀, 초미세, 고효율, 고내구성,						
	(+) 친환경, 기후변화,						
(기계산업)							
기술적 방향성	(+) 무인화, 지능화,						
	(+) 빅데이터, 인공지능,						
					(+) 안전		

- □ 코로나 發 '뉴노멀'에 맞추어 로봇 기술, 상시 진단기술 등 도출된 유망 기계기술의 선도적 역량 확보로 산업 변화에 선제적 대응 필요
 - (비대면화) 비정형 자율작업, 운반로봇, 해외 제조장비 자율/원격 제어, 무인 폐기물처리 등의 분야로 확산 가능
 - (위험대응 일상화) ICT 기반 상시 진단 시스템, 위험물질 개인 모니터링 기기, 현장형 진단시스템, AI-PHM, 로봇기술 적용 확대, 자율·협업 공장 등으로 확산 가능
 - (이동축소, 로컬화) 자율주행 수송기술(병원, 호텔 등), 무인 택배, 스마트 홈 공장, 스마트 홈 팜 등으로 확산 가능
 - * 스마트 홈 X(산업)에서 '홈'은 광의적으로 가정이나 로컬을 의미(예: 도시건물형 스마트팜도 '스마트 홈 팜'에 포함)
 - (예방 중심 의료) 환경·바이오 오염 모니터링, 개인 맞춤형 헬스케어 진단 기기, 공기질 관리 시스템 등
 - (국가 신자급자족화) 스마트 공장, 협동로봇 등 자율화 분야와 수요-공급 협력체계 기반 전략품목 기술 자립화 분야 투자 확대
 - 코로나 發 '뉴노멀'에서 우선순위가 다소 밀리거나 정체된 분야(공유경제 관련 분야 등)도 '안전' 요인 보강하여 재정비 가능
 - 국가적으로는 비상시 전략물자 신속 공급을 위한 공공 플랫폼형 생산지원 시스템 구축 필요
 - 코로나19와 같은 재난 상황에는 진단키트/방호물품 등 전략 물자의 수요가 급증하지만 충족하기 어렵고, 상황 종료 시에는 잉여 생산량 및 생산설비가 기업에 악영향을 초래
 - 출연연 중심으로 긴급히 대응이 필요한 분야(진단키트/인공호흡기/ 마스크 등)에 대해 평상시에 생산장비 역량을 구축(도면 은행화)하고, 비상시 전략 물자의 생산지원시스템을 신속으로 구축하여 적기 보급
 - * (예) 마스크 장비의 경우, 출연연이 마스크 장비의 설계 도면 제작부터 장비 구축까지 2개월이 소요(2.5만개/일 기준)되는데, 평상시에 전략 물자 장비 도면 및 실증 기술을 구축한 후, 비상 시 국가 자산으로 활용

 □ (스마트 공장) 코로나 이후, 제조기업의 회복력 강화를 위해 차별화된
'신제조 부품 → 신제조 장비 → 신제조 공정' ⇔ '스마트 부품 → 스마트 장비 → 스마트 공정'으로의 '고도화 선순환' 준비 필요

- ▶ Open data : Spec., 성능, 수명 및 모니터링 유닛
- > Closed data : Know-how를 내재한 맞춤형 설계 Tool(Simulator), 사용 조건에 따른 In-line 성능, 수명
- 전통 기계기술 중심의 하드파워 혁신(Reborn)과 ICT 중심의 소프트파워 혁신(Reform)이 상호 단계적 시너지를 이루어야만 품질과 생산성의 혁신 성장이 가능
 - * Reborn : 신제조 부품, 신제조 장비, 신제조 공정으로 이어지는 하드웨어형 혁신
 - * Reform : 하드웨어형 혁신(Reborn)의 부품, 장비, 공정 분야에 스마트화를 장착하며 품질, 생산성을 재혁신
 - 중소기업은 코로나 시기에 차별화된 콘텐츠를 기반으로 부품 혁신을 준비해야만 코로나 이후 조기 회복 및 성장이 가능
 - * 차별화된 콘텐츠: 부품에 패턴센서 등을 각인하여 데이터의 원천 소스 역할을 수행하거나, 다기능·고신뢰성이 가능한 부품 기술
 - 특히, 부품의 진화는 기계시스템 예지·보전 등 '안전' 기술의 요체
 - 중소기업의 부품 혁신은 장비, 공장의 혁신으로 이어지는 길목 혁신으로 작용하며 국가 공급망 리스크 해결 및 제조업 품질 고도화 가능

참고문헌

한국기계연구원, '4차 산업혁명과 기계산업의 미래', 「기계기술정책」, 2016.11. 한국기계연구원, '새로운 시대 소통 역량: 4차 산업혁명 연계기술', 「기계기술정책」, 2018.7.

관계부처 합동, '「한국판 뉴딜」추진방향', 2020.5.

대한무역투자진흥공사, '기획성 속보 2탄, 포스트 코로나 시대, 위기 속 새로운 기회를 잡아라', 2020.5.

동아일보사, '아주 작은 바이러스가 흔든 대한민국과 그 이후', 「DBR」, 2020.5. 배정원, '로봇이 잡초 뽑고 청소하고 창고 관리 "4년간 일어날 로봇시대가 4주만에", 2020.5.

삼정KPMG, '코로나19로 인한 거시경제적 영향 및 대응방향', 2020.3.

조선 비즈, '포스트 코로나', 「이코노미 조선」, 2020.5.

한국과학기술기획평가원, '포스트 코로나 시대의 미래전망 및 유망기술', 「KISTEP 미래예측 브리프」, 2020.4.

MarketsandMarkets, "COVID-19 Impact on Smart Manufacturing Market", 2020.4.

기계기술정책 발간 목록

제목	작성 연월
70. 동남아시아 기계산업 동향 분석-베트남 편	2013.04.
71. 글로벌 3D 프린터 산업, 기술 동향 분석	2013.09.
72. 독일 기계산업 경쟁력 분석과 시사점	2013.11.
73. 기계산업 2013년 성과 및 2014년 전망	2013.12.
74. 2014년 기계산업이 주목해야 할 트렌드 분석과 시사점	2014.02.
75. 우리나라 기계산업 품목별 수출 시장 점유율 분석과 시사점	2014.04.
76. 우리나라의 TPP 참여에 대비한 기계산업 품목별 관세 전략 수립	2014.09.
77. 2014 미래기계기술포럼코리아 주요 내용과 시사점	2014.11.
78. 기계산업 2014년 성과 및 2015년 전망	2014.12.
79. 최근 기계산업 대일무역역조 개선의 원인과 시사점	2015.06.
80. 기계산업의 빅데이터 활용 동향 분석과 시사점	2015.10.
81. 우리나라 해양플랜트 산업의 문제점 진단과 경쟁력 강화 방안	2015.12.
82. 기계산업 2015년 성과와 2016년 전망	2016.01.
83. 건설기계산업의 문제점 진단과 경쟁력 강화 방안	2016.05.
84. 4차 산업혁명과 기계산업의 미래	2016.11.
85. 기계산업 2016년 성과와 2017년 전망	2017.02.
86. 신기후체제에 대응한 농촌 바이오가스플랜트 사업의 기회	2017.07.
87. 해외 선도 기관과의 기계기술 연구 분야 비교 분석	2017.11.
88. 산업용 로봇 시장 동향과 대응	2017.12.
89. 기계산업 2017년 성과와 2018년 전망	2018.01.
90. 새로운 시대 소통 역량: 4차 산업혁명 연계기술	2018.07.
91. 국방분야 생존성 향상 기술 동향	2018.08.
92. 차세대 디스플레이 마이크로 LED 기술의 부상과 시사점	2018.09.
93. 기계산업 2018년 성과와 2019년 전망	2019.02.
94. 중국제조 2025 주요 제조장비 개발 계획과 대응 전략	2019.06.
95. 한·중·일 공작기계 및 기계요소 수출경쟁력 분석 및 제언	2019.07.
96. 미국 반도체 장비 기업의 성장과 시사점	2019.12.
97. 기계산업 2019년 성과와 2020년 전망	2020.01.
98. 글로벌 농기계산업 동향 분석	2020.02.
99. 포스트 코로나(Post COVID-19), 유망 기계기술 및 제언	2020.06.

기계기술정책

Technology Policy for Mechanical Engineering

:: No. 99 포스트 코로나(Post COVID-19), 유망 기계기술 및 제언

| 발행인 | 박상진

| 발행처 | 한국기계연구원

| 발행일 | 2020.06.

|기획·편집|기계기술정책센터

| 주소 | 대전광역시 유성구 가정북로 156

| 전화 | (042) 868-7682