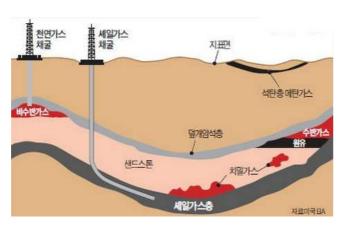
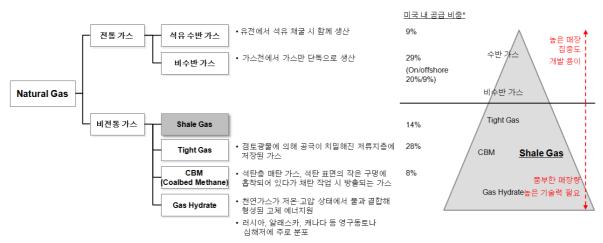
기계기술정책

KIMM Technology Policy


글로벌 셰일가스 개발 확대가 국내 기계산업에 미치는 영향


1. 셰일가스(Shale Gas)란?

□ 개념 및 특징

- 셰일가스는 진흙이 수평으로 퇴적된 후 탈수되어 굳어진 진흙 퇴적암 층인 셰일층에 존재하는 천연가스
 - 전통 천연가스가 오랜시간 동안 지표면 방향으로 이동, 발견되는 반면, 셰일가스는 셰일층 상부의 불투과 암석층으로 인해 셰일층에 잔류
 - 전통 천연가스와 동일한 성분으로 구성되어 있어 난방·발전 연료· 석유화학 원료 등으로 사용
 - * 가스 성분 구성: 메탄(CH4) 70~90%, 에탄(C2H6) 11%, 프로판(C3H8) 5%, 부탄(C4H10), 3%

<그림 1> 셰일가스의 매장 위치1)

Note: *2009년 기준, 나머지 11% 가량은 수입

<그림 2> 천연가스의 구분(좌) 및 매장량 · 개발 용이성 관점에서의 비교2)

¹⁾ 외교통상부 국제경제국 글로벌에너지협력센터, '글로벌 셰일가스 개발동향'(2012.09)

²⁾ 지식경제부 보도자료 <셰일가스 시대에 대비하여 에너지 및 관련 산업 전략 다시 짠다>(2012.05.15), 미국 EIA, 'Summary of Annual Energy Outlook 2011'(2011.02)

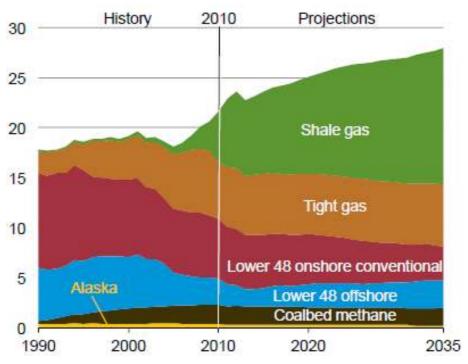
○ 셰일가스는 막대한 매장량, 전세계적으로 고른 매장 분포, 채굴 기술 개발을 통한 경제성 확보, 채굴 과정에서의 환경 오염 이슈가 특징

① 막대한 매장량

- 2010년 기준 셰일가스 확인매장량은 187.5조 m³으로 전통가스 확인 매장량 187.1조 m³와 비슷한 수준이며, 잠재매장량은 635조 m³으로 추정
 - * 확인매장량은 현재의 기술과 경제성을 고려했을 때 채굴 가능한 매장량을 의미하며, 잠재매장량은 존재 가능성이 있는 총 추정 매장량을 의미
- 현재 확인매장량은 전 세계가 약 59년간 사용할 수 있는 수준이며, 잠재매장량은 200년간 사용 가능한 규모
- 상기 조사가 러시아, 중동, 동남아, 중앙아프리카 등을 제외한 32개국 만을 대상으로 했다는 점을 감안하면 향후 매장량은 더욱 확대 가능

② 고른 매장 분포

- 전통 가스 공급처가 중동(41%), 러시아(24%) 등에 집중되어 있는 반면 셰일가스는 전세계에 고르게 분포
- 셰일가스는 중동과 러시아에 대한 천연가스 의존도를 약화시켜, 에너지 수급 안정성에 기여할 수 있을 것으로 기대


<표 1> 전통가스와 셰일가스의 지역별 매장량 분포(2010년, 조m³)3)

		전통가스 매장량(비중)	셰일가스 매장량(비중)		
	폴란드	0.16(0.088%)	5.30(2.8%)		
	우크라이나	1.10(0.590%)	1.19(0.6%)		
Europe	영국	0.25(0.136%)	0.57(0.3%)		
	프랑스	0.01(0.003%)	5.10(2.7%)		
	독일	0.18(0.094%)	0.23(0.1%)		
북미	미국	7.72(4.124%)	24.41(13.0%)		
폭비	캐나다	1.76(0.938%)	10.99(5.9%)		
즈니니	아르헨티나	0.38(0.203%)	21.92(11.7%)		
중남미	멕시코	0.34(0.182%)	19.28(10.3%)		
아프리카	남아공	-	13.73(7.3%)		
아프니카	알제리	4.50(2.406%)	6.54(3.5%)		
중	국	3.03(1.619%)	36.10(19.3%)		
호	주	3.11(1.665%)	11.21(6.0%)		
7	4	187.1(100.0%)	187.5(100.0%)		

^{*} 전통가스는 전 세계 매장량 기준이며, 셰일가스는 러시아와 중동국가를 제외한 34개 국 매장량 기준

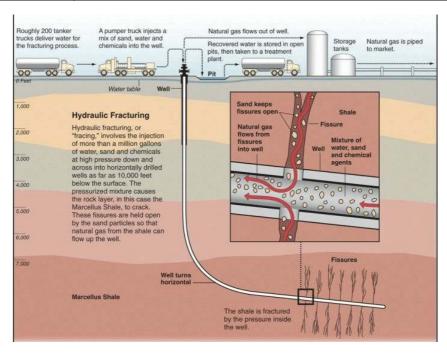
³⁾ EIA, 'World Shale Gas Resources: An Initial Assessment of 14 Regions Outside the United States' (2011)

- 미국의 천연가스 생산 중 셰일가스가 차지하는 비중은 2010년 23% 에서 2035년 49%까지 확대될 전망

<그림 3> 미국 내 천연가스 종류별 생산량(1990~2035, 조 ft³)4)

- ③ 채굴 기술 개발을 통한 경제성 확보
 - 셰일가스는 1800년대에 이미 발견되었으며, 최초의 채굴은 1825년5)에 이루어졌으나 경제성 부족으로 인해 채굴량이 미미
 - 2000년을 전후로 수평정 시추와 수압파쇄 등의 시추기술의 결합과 함께 국제 천연가스 가격 상승 등으로 인해 본격적인 생산 개시
 - * 수압파쇄 기술은 1940년대, 수평정 시추 기술은 1970년대에 석유 채굴에 이미 활용
 - 2000년을 전후로 수평정 시추, 수압파쇄 등의 시추기술 개발 완료와 함께 국제 천연가스 가격 상승 등으로 인해 본격적인 생산 개시
 - * 미국 셰일가스 생산량은 2000년 84억 m3에서 2010년 1,288억 m3로 급증이
 - 셰일가스 개발단가는 2007년 73달러/천㎡에서 2010년 31달러/천㎡로 하락하였으며, 이는 전통가스 평균 개발단가 46달러의 약 67% 수준기

⁴⁾ EIA, 'Annual Energy Outlook 2012 - with Projections to 2035'(2012)


⁵⁾ 대외경제정책연구원, '주요국의 셰일 가스 개발 동향과 시사점', KIEP 오늘의 세계경제 Vol. 12, No. 11(2012)

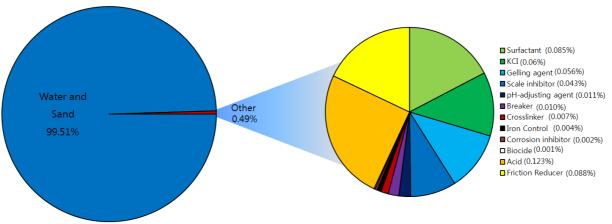
⁶⁾ 삼성경제연구소, '셰일가스가 가져올 3대 변화', SERI 경영노트 제143호(2012.03.15)

⁷⁾ 삼성경제연구소, '셰일가스가 가져올 3대 변화', SERI 경영노트 제143호(2012.03.15)

<표 2> 셰일가스 채굴 기술8)

구분	내용
	• 수직방향으로 암석층을 뚫은 뒤 다시 수평으로 셰일 가스 저장층에
	진입한 후 저장층과 수평을 유지하며 파이프를 연장해 시추하는 기술
수평정시추	• 시추관 길이는 수직 2~4km, 수평 1.5~3.0km에 달함
(Horizontal well	• 2007년을 기준으로 1,000~2,000m의 수평구간에서 수압을 가할 수
drilling)	있는 장치가 4~8개 정도 설치되었으나, 2010년에는 3,000m 구간에서
	20개 정도의 장치를 장착하여 보다 많은 셰일가스를 생산할 수 있게
	되었으며 현재는 30개 이상 설치되기도 함
	• 수직으로 뚫은 작은 시추공에 다량의 물과 모래, 화학물질을 섞은
ᄉᅅᆔᄱᆌ	유체를 고압으로 주입해 가스가 내재된 암석층에 균열을 일으켜
수압파쇄기법	가스를 채취하는 기술
(Hydraulic	• 수압파쇄기법을 통해 유체는 약 0.5% 정도의 화학물질이 혼합되는데,
fracturing)	이 유체를 주입하고 회수해 처리하는 과정에서 화학물질이 지하수가
	흐르는 대수층이나 지표수에 유입될 경우 환경문제 유발 가능성

수압 파쇄	① 물, 모래, 화학물질 등 혼합체를 고압(500~1,000기압)으로 투입
	수직 시추(수압 파쇄)로 셰일층에 도달하면 완만한 커브를 그리며 파이프를
	수평으로 시추
수평 시추	② 수평 시추를 통해 암석에 균열이 생기면,
	③ 균열 사이로 모래가 밀려들어가면서 균열을 유지하고 가스가 시추관
	으로 유입
플랜트	플랜트에서 채굴한 가스를 개질하거나, 난방, 발전 연료, 화학 원료로 분리
저장탱크	저장탱크에 저장 후 시장으로 판매

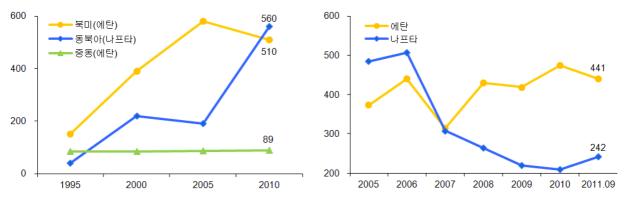

<그림 4> 셰일가스 채굴 방법9

⁸⁾ 외교통상부 국제경제국 글로벌에너지협력센터, '글로벌 셰일가스 개발동향'(2012.09)에서 인용·재구성

⁹⁾ Earthtimes 'Hydrauling fracturing and shale gas'(2011.07.16) 및 연구자 재작성

④ 채굴 과정에서의 환경 오염 이슈

- (식수원) 수압파쇄 시 사용되는 유체(물 90.6%, 모래 8.9%, 화학물질 0.5%)의 화학첨가물 회수 과정에서 지표면의 식수원이 오염될 우려
- 또한 수압파쇄기법은 기존의 시추법에 비해 1,000배 이상의 용수를 필요로 하여, 이로 인한 수자원 부족 문제가 발생할 가능성이 존재



<그림 5> 수압파쇄 시 유체의 화학첨가물 구성10)

- (온실가스) IEA는 셰일가스로 인한 온실가스 배출량이 전통 천연가스 추출 방식보다 3.5% 높고, 최대 12% 높아질 수 있음을 지적
 - * 셰일가스에서 나오는 온실가스는 연소 시 발생하는 이산화탄소(CO_2)와 채굴 시 발생하는 메탄가스로 구분
- 이러한 점은 셰일가스의 이산화탄소 배출량이 석탄의 55%, 석유의 70% 수준이라는 이점을 상쇄
- (지진) 수압파쇄로 인한 지하 지질 환경의 변화로 채굴지역의 지진 발생 가능성도 제기
- 실제로 영국 블랙풀 지역 Preese Gall Well에서의 탐사 작업 중 2011년 4~5월 두 차례의 지진이 발생하여 개발이 중단된 사례 존재
- 2012년 5월, IEA는 'Golden Rules for a Golden Age of Gas'를 발표 하고 셰일 가스 개발 시 환경 보호가 충분히 가능하다고 평가
- IEA는 셰일 가스 개발 시 환경대응비용이 현재 생산 비용을 7% 정도 증가시킬 것으로 예상

¹⁰⁾ AAPG GEO-DC Blog, 'Information and insights about the ingredients in a well's hydraulic fracturing fluid.'에서 인용

- □ 셰일가스 개발은 가스·석유화학·발전 산업 등 관련 산업의 구조 변화를 초래할 전망
 - (가스) 미국이 최대 생산국 부상 및 순수출국으로 전환될 것^{*}으로 전망 되면서 세계 천연가스 가격이 장기적으로 안정될 것으로 기대
 - * 미국 에너지관리청(EIA)은 2016년 미국이 LNG 순수출국으로 전환될 것으로 전망
 - 미국이 본격적으로 천연가스를 수출하게 될 2016년 이후 아시아의 LNG 가격은 1MMBtu¹¹) 당 현재의 10달러 후반 대에서 11달러로 내려 갈 것으로 전망¹²)
 - * 아시아는 세계 LNG 수입량의 56%를 차지하고 있으며, 2012년 5월 현재 아시아의 LNG 현물 가격은 1MMBtu 당 18달러 수준¹³)
 - (석유화학) 세계 석유화학산업 업계는 가격 경쟁력을 가진 셰일가스를 원료로 사용하는 생산설비로 전환될 것으로 예상
 - 2010년 북미 석유화학산업의 에틸렌 생산 원가는 510달러로, 1995년 이후 처음으로 동북아(560달러)를 하회
 - 북미의 에틸렌 생산원가 하락은 천연가스로부터 추출한 에탄의 가격이 원유로부터 추출한 나프타 가격의 1/2 수준으로 하락했기 때문
 - 이미 중동과 북미의 에틸렌 공장은 이미 천연가스를 사용하는 생산 설비로 전환되었으며, 동북아 지역도 2020년 이후 본격 전환 예상

* 에틸렌 : 대표 석유화학 제품으로 석유에서 생산한 나프타 및 가스에서 생산한 에탄을 원료로 하여 생산됨 <그림 6> 에틸렌 생산원가 추이(좌) 및 에틸렌 마진 추이¹⁴)

^{11) 1} million British thermal unit로 약 25만㎞의 열량을 내는 가스량 (28.263682m³ 또는 998.12ft³)

¹²⁾ IEA, 'World Energy Outlook' 2011(2011)

¹³⁾ 파이낸셜 뉴스 기사 <아시아 LNG 가격, 올 여름 사상최고>(2012.05.18)

¹⁴⁾ SERI, '셰일가스가 가져올 3대 변화'에서 인용(2012.03.15)

- (발전) 이미 미국에서는 에너지원으로 천연가스 비중이 높으며, 환경 오염 물질 배출, 전력 생산 비용 관점에서 천연가스 비중 확대 전망
 - EIA의 'International Energy Outlook(2011)'에 따르면, 세계 전력생산 원료 중 천연가스의 비중은 2008년 22%에서 2035년 24%로 증가 전망 * 석탄의 비중은 같은 기간 40%에서 37%로 감소할 것으로 전망
 - 미국 전력 생산에서 천연가스의 비중은 2011년 1월 20.4%에서 2012년 9월 32.3%까지 증가¹⁵)
 - * 천연가스 비중 확대로 인해 미국의 2011년 기준 이산화탄소 배출량은 2007년 대비 9.2% 감소¹⁶)
 - 복합 화력발전 중에서도 가스 복합 화력(NGCC)는 석탄가스화 복합 화력(IGCC)에 비해 환경오염 물질 배출량 관점에서 우위
 - 이산화탄소 배출의 경우 IGCC가 약 900gCO₂e/kWh일 때, NGCC는 약 500gCO₂e/kWh 수준으로 배출량이 거의 절반 수준¹⁷)
 - NGCC와 IGCC의 1KW당 Overnight Cost*를 비교하면 NGCC는 978 달러인데 비해 IGCC는 3,565달러로 NGCC가 약 27% 수준¹⁸)
 - * Overnight Cost: 발전플랜트 시공에 소요되는 기간을 단 하루라고 가정하고 추정한 가격
 - 우리나라 또한 셰일가스에 의한 천연가스 가격 하락을 고려하여 제6차 전력수급기본계획에서 천연가스 발전 비중 확대 가능성 존재

<표 4> 복합 화력 발전의 기술 분류, IGCC와 NGCC

석탄가스발전(IGCC : Intergrated Gasification Combined Cycle)은 고온 고압 상에서석탄을 합성가스로 전환한 뒤 전기, 액화 석유를 생산하는 기술로 기존 석탄 화력 발전에비해 발전 효율은 3%~10% 향상, 아황산가스와 질소산화물(환경오염 물질) 저감 효과는 각각95%, 90% 이상 우수

가스복합발전(NGCC: Natural Gas Combuned Cycle)은 가스터빈을 돌려 1차 발전을 하고 배기가스열로 증기를 생산해 스팀터빈을 돌려 2차로 발전하는 방식(가스터빈과 스팀터빈의 동시 사용)으로, 2차에 걸쳐 발전하기 때문에 기존 화력발전보다 열효율이 10%이상 높다는 장점이 있으며 주로 출력 100MW 이상의 대형·초대형 가스터빈이 사용

¹⁵⁾ 미국 EIA 'Electric Power Monthly with Data for September 2012'(2012.11)

¹⁶⁾ 일본 SankeiBiz '米国のCO2排出大幅減 新型天然ガスの利用拡大効果'(2012.06)

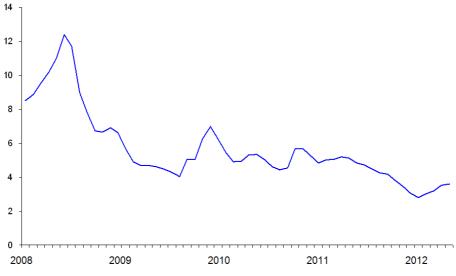

¹⁷⁾ IOP Science, 'Life cycle greenhouse gas emissions of Marcellus shale gas' (2011.08)

¹⁸⁾ LIG투자증권, '폭발하는 가스발전, 설레는 발전기자재業'(2012.02.29)

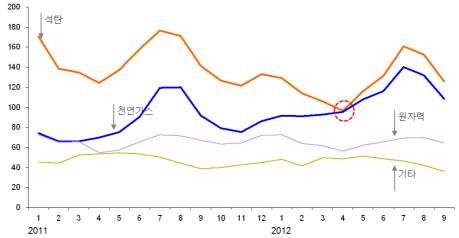
2. 글로벌 셰일가스 개발 동향

1 미국

- 최대 천연가스 수입국이었던 미국은 셰일가스 생산으로 인해 2009년 러시아를 제치고 세계 최대 천연가스 생산국으로 등극
 - 미국의 천연가스 생산량은 2005년 5,111억 m³를 기록한 후, 지속 증가 하여 2011년 6513억 m³를 기록
 - 미국 내 셰일가스 생산 확대로 천연가스 소비와 생산량 간의 격차는 갈수록 축소되는 추세
 - * 미국의 천연가스 순수입량은 '09년 2,679bcf에서 '11년 1,949bcf로 감소19)



- 미국의 셰일가스 생산 증대는 미국 내 천연가스 가격하락을 견인
 - 미국 내 천연가스 가격은 2008년 6월 1ft³²¹⁾당 12.41달러에서 2012년 4 월 2.79달러까지 하락
 - * 발전 기준 가격(U.S. Natural Gas Electric Power Price)
 - 셰일가스의 가격하락으로 미국 일부지역에서 천연가스 발전비용이 석탄 발전비용 보다 저렴해지면서 천연가스의 수요가 석탄 수요를 대체


¹⁹⁾ 외교통상부 국제경제국 글로벌에너지협력센터, '글로벌 셰일가스 개발동향'(2012.09)에서 인용·재구성

²⁰⁾ BP 'Statistical Review of World Energy' June 2012

²¹⁾ $1ft^3=0.0283m^3$

<그림 8> 미국 천연가스 가격 변화 추이(단위: 달러/ft3)22)

주: 기타 에너지원에는 액화석유, 석유 코크스, 기타 가스, 수력 발전, 신재생에너지 등 포함

<그림 9> 미국의 발전 수요 변화 추이(MWh)²³⁾

- 미국 내 LNG 수입터미널을 보유 중인 에너지 기업들은 셰일가스의 생산량 증대에 따른 잉여분의 해외수출을 추진
 - 미국 에너지부(DOE)는 원유 및 천연가스의 수출을 금지해왔으나, 2011년에 들어 40년 만에 LNG 수출 계획을 승인
 - 2012년 5월 기준 공식 승인된 Cheniere社의 Sabin Pass 프로젝트를 포함하여 미국에서 제안되고 있는 LNG수출 프로젝트는 총 14개
 - * 한국가스공사는 Sabine Pass LNG와 2012년 1월 장기 LNG 매매 계약 체결을 통해 2017~2036년 연간 350만 톤 규모의 LNG를 구매하기로 합의

²²⁾ 미국 EIA Natural Gas 가격 데이터

²³⁾ 미국 EIA 'Electric Power Monthly with Data for September 2012'(2012.11)

<표 5> 미국 LNG 수출 프로젝트 진행 현황(2011년 기준)²⁴⁾

		일일 수출 규모(bcf, 십억입방피트)				
프로젝트	추진 기업	FTA	국가대상	Non-FTA 국가대상		
		규모	승인여부	규모	승인여부	
Sabine Pass Liquefaction	Cheniere Energy	2.2	승인	2.2	승인	
Freeport LNG Expansion	ConocoPhillips	1.4	승인	1.4	DOE 심사 중	
Dominion Cove Point	Dominion Resources	1.0	승인	1.0	DOE 심사 중	
Lake Charles Exports	Southern Union	2.0	승인	2.0	DOE 심사 중	
Carib Energy	Carib Energy	0.03	승인	0.01	DOE 심사 중	
Jordan Cove Energy Project	Veresen Inc.	1.2	승인	1.2	DOE 심사 중	
Cameron LNG	Sempra	1.7	승인	1.7	DOE 심사 중	
	Gulf LNG	2.0	ا م م	2.0	DOE ALL S	
Gulf Coast LNG Exports	Liquefaction Company	2.8	승인	2.8	DOE 심사 중	
Cambridge Energy	Cambridge Energy	0.27	승인대기		=	
LNG Development	Oregon Energy	1.25	승인	-		
Southem LNG	Kinder Morgan	0.5	승인	-		
SB Power Solutions Project	SB Power Solution Inc.	0.07	승인	-		
Lavaca Bay LNG Project	Exoelerate Energy	1.38	승인대기	-		
전체		18.70		13.31		

2 중국

- 중국은 세계 최대 규모의 셰일 가스 매장량(미국의 1.5배)을 보유하고 있으며, 정부의 적극적인 지원을 기반으로 셰일가스 기술개발 추진 중
 - 2035년 중국 내 가스 생산의 약 62%를 셰일가스로 충당할 계획25)
 - 2009년 11월 '미·중 셰일가스 개발 MOU'를 체결하는 등 미국과의 기술협력 강화
 - * 중국 내 셰일가스 매장량 평가, 셰일가스 개발 촉진을 위한 공동 기술연구 수행, 셰일가스 개발투자 촉진 등을 중점으로 논의
 - 중국 국토자원부는 2012년 3월 발표한 '제12차 5개년 계획(12.5규획, 2011~2015)'에서 2015년까지 65억m³의 셰일 가스 생산 목표 수립
 - 셰일 가스 생산과 관련한 셰일층 조사 · 평가, 매장량 평가, 시험 분석과 테스트, 탐사 개발, 환경 보호 등에서의 R&D와 표준 정립에 박차
- 2005년 이후 셰일가스 탐사를 시작한 중국은 기술개발 초기단계로 기술적으로 낙후한 상황

²⁴⁾ 외교통상부 국제경제국 글로벌에너지협력센터, '글로벌 셰일가스 개발동향'(2012.09)에서 인용·재구성

²⁵⁾ 외교통상부 국제경제국 글로벌에너지협력센터, '글로벌 셰일가스 개발동향'(2012.09)에서 인용·재구성

- 약 4~6km의 깊은 셰일층(미국 2~4km), 단층과 산이 많은 복잡한 지질 구조 및 인프라 부족, 채굴을 위한 핵심기술 부재 등의 문제 존재
- 중국의 채굴기술은 미국보다 약 10년이 뒤쳐져 있으며, 셰일가스 채굴 기술 경험 및 핵심설비가 부족하여, 미국의 시추기술 도입 방안 검토
- 시노펙, CNPC, CNOOC 등의 중국 국영기업들은 셰일가스 채굴기술 확보를 위해 해외기업 인수 및 합작투자를 적극 추진

<표 6> 중국 주요기업의 셰일가스 사업 추진 현황

기업	연도	사업 추진 내용						
	2010	• Shell과 공동으로 호주 석탄층 가스 생산업체인 Arrow Energy 인수						
		(37.7억 달러)						
CNPC		• Shell과 셰일가스 생산물 분배 협정 체결						
	2012	• 쓰촨성 분지 내 푸순-융촨 광구 탐사, 개발 및 생산 공동 시행 계획						
		• 쉘의 캐나다 그라운드버크셰일 지분 20% 인수(10억 달러 예상)						
	2010	• 미국 남부 텍사스의 체사피크 이글 포드 셰일 가스 사업 지분 33.3%						
CNOOC		인수(10.8억 달러)						
	2011	• 콜로라도 주 니오브라라셰일 지분 33% 투자(5.7억 달러)						
	2010	• 영국 BP와 중국 서남부 귀주성 셰일 가스 광구 개발에 합의						
	2011	• 미국 엑손 모빌과 쓰촨성 분지 내 메이구 광구에 대한 공동 환경 조사 실시						
시노펙		• 프랑스 토탈과 내몽골자치구 내 셰일가스 개발 협력 협정 체결						
	2012	• 데본에너지(美)의 5개 셰일광구 지분 33% 인수(22억 달러)						
		• 수압파쇄기술 회사인 프랙테크(美) 지분 30% 인수 추진 중(22억 달러 예상)						

- 중국 국토자원부는 셰일가스를 '新광종'으로 분류하여 국영석유기업^{*} 외에 민간기업도 개발에 참여할 수 있도록 하고, 생산 보조 정책^{**}을 실시
 - * 중국은 석유가스 분야에서의 개발을 4개의 국영석유기업(CNPC, CNOOC, Sinopec, Yanghang Petroleum)에만 허용
 - ** 셰일가스 생산기업에 RMB(위안) $0.2/m^3$ 의 보조금 지급 및 셰일가스 발전소 계통 연결 시에는 RMB 0.2/kWh의 보조급 지급 등

③ 중남미

- 중남미 국가 중 아르헨티나(21.92조m³)와 멕시코(19.28조m³)는 각각 세계 3, 4위의 매장량을 보유
- ① 아르헨티나는 중남미 최초의 셰일가스 개발 국가로, 국영에너지 기업인 YPF社가 개발을 주도하고 있으나 日 생산량은 1,000㎡ 규모에 불과
 - 아르헨티나의 셰일가스 생산은 서부 Neuquen주에서 수행

- ExxonMobil(美), Apache(美), EOG Resource(美), Total(佛), Shell(英) 등은 해당 지역에서 탐사 시추 및 테스트 작업 중
- 향후 아르헨티나의 셰일가스 개발 활성화를 위해 에너지 가격의 현실화, 노사관계 개선, 비우호적인 외국인 투자환경 개선 노력 등이 필요

<표 7> 아르헨티나의 셰일가스 개발 활성화를 위한 개선 사항 주요 이슈26)

주요 이슈	내용
에너지 가격의	• 가스 판매가격이 국제 평균시세나 수입가격보다도 낮게 책정되어 있어
	가스 수요는 급증한 반면, 생산증대를 위한 신규 투자는 제대로 이루어
에디지 기득리 현실화	지고 있지 못하는 실정
도들지	• 특히, 셰일가스 개발은 탐사 및 생산 비용이 전통가스보다 비싸기
	때문에 투자 유인을 위한 가스 판매가격 인상이 더욱 요구
	• 석유가스 관련 산업의 빈번한 파업은 생산량 감소 및 유통체계 혼란
노사관계 개선	으로 이어져 셰일 가스 개발비용을 더욱 상승시키는 요인으로 작용
고시한계 계한	• 실제로 2011년 4월부터 한 달여간 지속된 산타 크루즈(Santa Cruz)주
	석유산업 노동자들의 파업으로 인해 석유 생산이 15% 감소
	• 현재 아르헨티나 정부는 YPF를 국유화하였으나 기존 최대 주주인 스페인
	기업 Repsol社와 법정 분쟁 중
비우호적인	• 외국기업들은
외국인	- 신규 생산된 셰일 석유 및 가스에 대한 가격 규제 철폐
투자환경 개선	- 외환시장에서의 외국기업의 자유로운 거래 허용
노력	- 외국기업들이 이윤을 본국에 송금할 수 있도록 허용
	- 개발에 필요한 장비 및 기계, 기술 등에 대한 접근 보장
	- 최소 20년 이상의 양허기간 보장(관세 동결) 등의 조건을 제시

- ② 멕시코는 2012년 2월 '국가 에너지 전략 2012-2026' 발표를 통해, 셰일 가스 개발을 통한 천연가스 증산 및 가스 배관망 증설 등을 계획
 - 멕시코는 2016년까지 셰일가스 매장 확인을 위해 175개 시추 계획 및 일일 566.3만㎡을 생산하여, 2026년에는 약 9,300만㎡까지 증가시킬 계획27)
 - 미국의 셰일가스 수입 및 국내 배송망 구축을 위해 2015년까지 총연장 4,378㎞의 8개 가스 배관망 확충 예정
 - * 멕시코는 가스 생산국이나 공급 부족으로 미국 등에서 천연가스를 수입하고 있으며, 2009년 기준 미국으로부터의 수입량은 전체의 72.9% 차지
 - 멕시코 국영 에너지 기업인 PEMEX는 2011~2015년 7억 달러 투자 계획을 밝히고, 본격적인 셰일가스 생산은 2016년부터일 것으로 전망

²⁶⁾ 대외경제정책연구원, '주요국의 셰일 가스 개발 동향과 시사점'(2012.06.28) 및 외교통상부 글로벌에너지협력센터, '글로벌 셰일가스 개발 동향'(2012.09)에서 인용·재구성

²⁷⁾ 외교통상부 글로벌에너지협력센터, '글로벌 셰일가스 개발 동향'(2012.09)에서 인용

4 아프리카

- (남아공) 세계 5위의 매장량(13.73조m³)을 보유
 - 남아공의 Great Karoo 지역에 대부분의 셰일가스가 매장되어 있으며, Shell社의 주도로 셰일가스 개발사업 추진 모색 중
 - 고고학적 가치*, 양 목축, 산업 용수 부족, 지하수 오염 등의 이슈가 본격적인 셰일가스 개발을 저해
 - * 공롱 화석이 다수 발견되는 지역
 - 남아공에 매장되어 있는 석탄이 액화 연료화하여 디젤과 항공유 생산이 가능한 것 또한 남아공의 셰일가스 개발을 저해하는 요인
- (알제리) 세계 9위의 매장량(6.54조㎡)을 보유하고 있으며, 외국기업 과의 합작을 통한 셰일가스 개발 추진
 - 2011년 4월 이탈리아의 Eni SPA와 셰일가스 공동 개발 합의
 - 2012년 10월 알제리 국영석유회사인 Sonatrach는 Royal Dutch Shell PLC(RDSB)와 파트너십을 체결했으며, ExxonMobil과도 체결 예정

5 유럽

- 유럽 국가들은 전반적으로 매장량이 많지 않은데다 개발비용이 클 것으로 나타나 셰일 가스 개발 속도가 더딜 것으로 전망
 - 유럽 국가 중 폴란드, 프랑스 등에 약 5조㎡의 셰일가스가 매장되어 있으며, 이는 미국의 약 20% 수준
 - * 유럽 전체의 셰일가스 매장량은 약 16조㎡로 예상
 - 유럽의 셰일가스 매장 지역은 주로 인구 밀집 지역과 겹쳐 환경문제가 심각하게 고려될 것으로 예상
 - 셰일가스 매장지역 대부분이 땅 속 깊은 곳에 위치하고 있어 개발 비용 또한 미국에 비해 높을 것으로 예상
 - * 폴란드 · 프랑스 등의 개발 손익분기 비용은 미국(4달러/MMBTU)의 2배 상회 (LG경제연구원(2011), '셰일가스, 석유화학 산업 판도 흔든다.')

- 천연가스의 수입 비중이 높은 국가를 중심으로 셰일가스 개발이 추진 될 전망
 - 폴란드, 우크라이나 등은 가스 수요의 2/3을 러시아에 의존하고 있어, 셰일가스 개발이 가스 수급 구조 개선에 기여할 것으로 예상

<표 8> 유럽 주요국 셰일가스 개발 현황28)

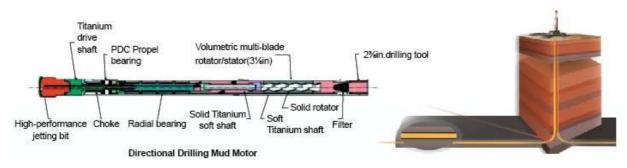
국가	구분		내용
		•	낮은 인구 밀도 및 환경문제에 대한 저항이 낮아 개발이 상대적으로 용이
		•	주변국에 비해 낮은 세금 수준을 유지하고 있어 미국 에너지업계가 최적의
	특징		셰일가스 투자 후보국으로 평가
		•	깊은 셰일가스 매장층 및 복잡한 지질구조, 인프라 · 설비의 부족 등
			으로 개발비용이 미국 대비 3배 이상 높을 것으로 추정(FT, 2012년 4월)
폴란드		•	폴란드는 환경오염에 대한 외국 업체들의 도덕적 해이 가능성을 고려
			하여 셰일가스 개발 사업에 자국 기업의 사업 참여를 유도
	주요 현황	•	폴란드 국영가스기업인 PGNiG와 ConocoPhillips, Chevron, Marathone
	1		등의 기업은 Baltic 분지에 있는 셰일광구 임차
		•	Lane Energy Poland의 자회사인 3Legs Resources가 ConocoPhillips와
			함께 셰일가스 탐사정 시추
우크	특징		외국 메이저기업에게 셰일가스 시장을 개방하여 적극적으로 셰일가스 개발
 라이나		•	인구가 밀접되어 있는 다른 유럽 지역에 비해 수평적 시추법이 유리 외국계 가스회사 Shell, Chevron 등이 우크라이나 셰일가스 탐사 및
니이니	주요 현황		개발 입찰에 성공하면서 2017년 경 셰일가스 생산이 가능할 것으로 전망
		•	유럽 셰일가스 개발의 바로미터를 폴란드로 삼아 관련 사례를 집중 모니터링 중
		•	모든 셰일가스 개발 프로젝트에 드릴링 작업 이전 '사전 환경영향평가'를
	 특징		받아야 할 의무 부과(허가기관 : 환경청, 스코틀랜드 환경보호청)
	70	•	지진 진동 최소화를 위한 적색경보시스템 개발 및 지하수 오염 최소
			화를 위한 화학물 제조 기술 등 셰일가스의 안전·환경보호 관련 기술
영국			개발 선도를 추진
		•	2011년 말 기준으로 4~5개 기업이 영국 내 셰일가스 개발허가를 취득
		•	2010년 말 Cuadrilla는 블랙풀지역의 Preese Gall Well에서 탐사 작업을 시
	주요 현황		작하였으나 2011년 4,5월 발생한 두 차례의 지진으로 개발 중단
			- 지진은 Cuadrilla의 드릴링작업과 관련이 있으나 향후 개발적업이 치명적
	특징		인 지진을 유발할 가능성은 미미한 것으로 판단 환경오염의 문제로 수압파쇄기법 사용 금지 등 셰일가스 개발에 소극적
프랑스		•	전영오림의 문제도 구립파뙈기립 사용 급시 등 세월기스 개월에 모드되 Total이 미국의 Devon과 함께 남부지역의 셰일가스 탐사 진행
-0-	주요 현황	•	다수의 기업들이 프랑스 남동분지의 셰일가스 탐사 개시
		•	<u>다수의 기업들이 프랑스 남동분지의 셰일가스 탐사 개시</u> 2012년 현재 셰일가스를 전혀 생산하고 있지 않으며, 독일 정부는 환경
	특징		오염의 가능성으로 셰일가스 생산을 반대하는 입장
		•	그러나 독일의 발달된 채굴기술을 바탕으로 셰일가스 개발 설비 수출 및
독일			자원탐사, 시추 등 해외개발시장 진출에 높은 관심을 가지고 있어 셰일
			가스 탐사 및 관련기술 개발은 적극적으로 지원
	주요 현황	•	ExxonMobil은 셰일가스광구 임차 선도기업이며, 5개의 시험정 시추
	- 23	•	Realm Energy, BNK Petroleum, 3Legs Resources 등이 셰일가스 탐사권 보유

²⁸⁾ 외교통상부 글로벌에너지협력센터, '글로벌 셰일가스 개발 동향'(2012.09), 대외경제정책연구원, '주요국의 셰일가스 개발 동향과 시사점'(2012.06), 에너지경제연구원, '셰일가스 개발 현황과 파급효과 전망'(2012.07)

5 기타 국가

- ① 호주는 셰일가스 세계 6위의 보유량(11.21조㎡)을 보유하고 있으며, 셰일가스의 경제성 평가를 위한 탐사활동 추진 중
 - 호주는 파이프라인, 액화 시설 등의 전통가스 설비를 보유하고 있어 상대적으로 진입비용이 낮다는 장점을 보유
 - 주요 부존지역으로 꼽히는 Perth와 Cooper를 중심으로 Origin Energy社, Santos社 등의 호주기업 및 중국의 CNPC社 등이 탐사 진행 중
 - 그러나 호주는 현재 LNG, 탄층가스(CBM) 개발을 우선 순위에 두고 있으며, 환경오염, 농지훼손 등의 문제로 셰일가스 개발에 소극적
- ② 캐나다는 셰일가스 세계 7위의 보유량(10.99조㎡)을 보유하고 있으며, 아시아 지역의 기업들의 진출이 활발하게 진행 중
 - 캐나다는 천연가스 생산량의 절반을 미국에 수출해왔으나, 미국의 셰일
 가스 생산 증가 및 이에 따른 가격 인하로 천연가스 수출이 감소
 * 캐나다 천연가스 수출 추이(억㎡): 1,075(2007) → 1,033(2008) → 923(2009) → 924(2010)²⁹⁾
 - 아시아 지역으로의 천연가스 수출 가격이 미국보다 3배 이상 높아 전략적인 관점에서 아시아 기업과의 가스 개발 협력에 높은 관심
 - 외국 기업 가운데 일본의 Mitsubishi가 가장 활발하게 활동하고 있으며, 우리나라의 한국가스공사*도 다수의 가스전 개발 사업에 참여

<표 9> 아시아의 캐나다 셰일가스 개발 진출 현황30)


국가	업체 및 추진 내용
	Mitsubishi
	- Penn West Exploration과 공동으로 Cordova 지역의 셰일가스 개발 시업을 추진(지분 50%)
일본	- 2012년 2월 EnCana 소유, Outbank 지역 셰일가스 자산지분 40% 인수
	Inpex Corporation
	- Nexen과 Horn river, liard, Cordova 지역 공동개발을 위한 컨소시엄 구성
	• 한국가스공사
한국	- EnCana가 소유한 Horn river, Cutbank 지역 비전통가스 자산 50% 매입, 공동으로 개발ㆍ생산
	- Mitsubishi 소유의 Cordova社 지분 10% 매입(셰일, 치밀가스 총 2.7tcf확보)
중국	• CNOOC, 12.7월 Nexen사 인수계획 발표(151억 불)

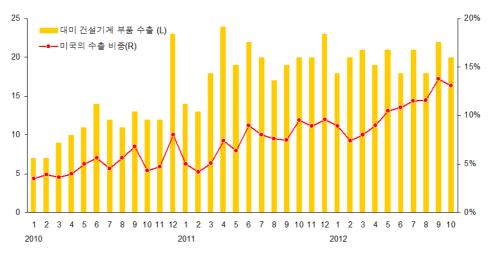
²⁹⁾ 외교통상부 글로벌에너지협력센터, '글로벌 셰일가스 개발 동향'(2012.09)에서 인용

³⁰⁾ 외교통상부 글로벌에너지협력센터, '글로벌 셰일가스 개발 동향''(2012.09)에서 인용

3. 셰일가스 개발이 국내 기계산업에 미치는 영향과 시사점

- □ 기계산업은 셰일가스 산업의 업스트림(Upstream)과 다운스트림 (Downstream) 전역에서 다양한 장비와 관련 부품 · 기자재를 공급
 - (셰일가스 생산) 시추 장비(동력 전달용 기어박스 포함), 배관 기자재, Frac Plug³¹), 밸브류, 혼합기, 혼합물 공급 고압 펌프·수처리 시스템·불순물 제거 여과기, 셰일가스 추출기, 굴삭기·크레인 및 건설기계 부품

<그림 10> 수평정시추(Horizontal well drilling) 장비의 구조32)


- (셰일가스 수송·저장) 저장 탱크, 파이프라인, 가스 액화 플랜트 관련 기자재, LNG Carrier용 극저온 펌프·압축기·밸브 등
- (플랜트) 에탄 원료 (신규) 석유화학 플랜트 관련 기자재, 천연가스 복합화력 발전 플랜트 관련 기자재(가스터빈, HRSG 등)
- □ 셰일가스의 매장 지역이 다양하고, 채굴량이 가파르게 증가하는 만큼 셰일 가스는 국내 기계산업의 수출에도 긍정적인 영향을 미칠 것으로 예상
 - 2012년 상반기 캐터필라, 존디어, 테렉스, 아틀라스콥코 등의 美 건설 기계 업체 실적 개선에 따라 對美 건설기계 부품 수출액이 크게 증가
 - 캐터필라와 존디어는 2012년 상반기 북미지역 건설기계 매출액이 각각 전년대비 42%, 23% 증가³³)
 - 대미 건설기계 부품 수출은 2010년 1월 7백만 달러에서 2012년 10월 20백만 달러로 증가하였으며, 수출에서의 비중도 3.5%에서 13.1%로 상승

³¹⁾ 수압 파쇄기법을 통해 균열된 암석층 스테이지와 신규로 생성할 균열 암석층 스테이지를 구분하여 기존 균열 암석층 스테이지에 더 이상 물·모래·화학물질이 주입되지 않도록 하는 부품

³²⁾ http://www.antonoil.com, 'Shale Gas Development'(2012.01.13)에서 인용

³³⁾ Kotra Globalwindow '셰일가스가 미국 제조업을 부흥시킬까?'(2012.09.09) 작성

- 대미 건설기계 부품 수출 증가는 2012년 3월 15일 발효된 한 · 미 FTA의 효과도 일부 반영된 것으로 추정34)
- 삼원테크 등 유압 관이음쇠 제조기업은 셰일가스 붐에 힘입어 최근 미국 건설기계 제조사로부터의 수주가 확대35)

<그림 11> 대미 건설기계 부품 수출과 수출 비중 추이(백만 달러, %)36)

- 보일러, 펌프 및 압축기, 밸브류 등 셰일가스 생산 장비 부품 및 플랜트 기자재 중 일부는 이미 對美 수출 증가 및 비중 확대를 달성
 - 셰일가스 저장용으로 쓰이는 저장 탱크는 2011년 4분기 이후 4분기 연속 수출 1,000만 달러를 돌파하였으며, 對美 수출 비중도 5% 수준
 - 2010년 분기당 1.5백만 달러 수준에 불과했던 보일러 수출은 미국의 가스 복합 화력 발전 투자³⁷) 확대 효과가 나타나며 2011년 이후 수출 확대 * 보일러 수출의 대미 비중 또한 2012년 8%대로 올라섬
 - 시추용 펌프 및 가스화력발전 플랜트용 압축기 또한 2012년 들어 8,000만 달러에 달하는 분기별 수출 실적을 달성하였으며 對美 수출 비중도 30%대에 육박
 - 밸브류 또한 2011년 2분기 이후 지속적으로 5,000만 달러 이상의 대미 수출 실적을 달성

³⁴⁾ 한미 FTA가 기계산업에 미치는 영향에 대한 내용은 기계기술정책 '한미 FTA 발효에 따른 기계 부품 對 美 수출 촉진 방안', Vol. 6, No. 6 참고

³⁵⁾ 이데일리 기사 '삼원테크, 셰일가스 개발 붐으로 광산장비 매출 증가'(2012.11.14)

³⁶⁾ 부품소재통계 종합정보망

³⁷⁾ 미국은 2010년~2035년 사이 천연가스 개발을 통해 135GW의 전력을 추가로 생산할 계획으로 관련 투자 규모는 약 1,700억 달러에 달하는 수준(SERI, '셰일가스가 가져올 3大 변화', 2012)

- 반면 배관 기자재 수출은 보급형 제품에서의 후발국 대비 가격 경쟁력 미흡, 고부가가치 품목 미확보 등으로 인해 증가세가 더딘 편

<표 10> 셰일가스 생산 관련 기계부품 및 플랜트 기자재 對美 수출 추이(백만 달러, 비중)38)

기간	2010				2011				2012		
품목	1Q	2Q	3Q	4Q	1Q	2Q	3Q	4Q	1Q	2Q	3Q
저장탱크	16.8	13.3	4.1	6.8	6.5	5.0	5.8	13.8	10.1	10.9	13.3
~ ~ ~ ~ ~ ~	(11.4%)	(8.8%)	(2.3%)	(3.6%)	(2.5%)	(2.2%)	(2.0%)	(5.4%)	(4.9%)	(5.5%)	(5.1%)
보일러	1.1	0.8	2.6	1.6	0.7	12.3	3.5	5.3	1.0	4.3	4.6
	(1.5%)	(2.4%)	(6.2%)	(2.2%)	(1.3%)	(22.8%)	(4.6%)	(8.1%)	(3.1%)	(7.2%)	(7.8%)
펌프 및	47.9	55.7	57.4	75.7	87.0	53.7	32.0	70.0	82.5	87.5	78.2
압축기	(20.3%)	(22.3%)	(22.9%)	(26.4%)	(25.2%)	(20.4%)	(15.4%)	(25.8%)	(27.3%)	(26.8%)	(28.6%)
여과기	7.5	2.5	3.8	2.1	4.2	4.6	3.7	4.5	4.8	18.8	9.6
어피기	(6.8%)	(1.9%)	(3.2%)	(1.1%)	(2.3%)	(2.0%)	(1.6%)	(2.0%)	(2.5%)	(7.8%)	(3.7%)
관	7.7	8.3	8.7	10.4	16.0	9.2	8.5	9.5	6.4	5.6	5.6
	(21.0%)	(18.9%)	(21.8%)	(21.6%)	(38.5%)	(21.7%)	(19.5%)	(21.1%)	(14.3%)	(13.0%)	(14.9%)
밸브류	33.8	41.3	42.7	46.9	36.2	50.4	56.5	59.1	60.8	57.7	62.1
2-π	(13.4%)	(14.9%)	(16.0%)	(13.7%)	(11.5%)	(14.1%)	(13.9%)	(12.4%)	(13.1%)	(11.9%)	(10.9%)

○ 중장기적으로 셰일가스 생산, 수송·저장 및 플랜트 분야에서 우리나라 기계산업 업체들의 수혜가 기대되며, 기업들의 움직임도 본격화

<표 11> 셰일가스 개발 확대 관련 우리나라 기계 업체별 주요 동향

업체	내용
취미조고어	• 북미 변압기 시장 점유율 1위를 기록하고 있으며, 셰일가스 발전소 건설이
현대중공업	활발해질 경우를 대비해 변압기 공급을 더 늘릴 계획
(플랜트)	• 향후 터빈 보일러 등의 다른 제품으로까지 확대 생산할 계획
두산인프라코어	• 중장비 주문이 크게 늘면서 2009년 초 폐쇄한 미국 밥캣의 비즈마크 공장
(생산)	(소형 건설장비 생산, 노스다코다 주 소재) 재가동 시작('11.년 9월)
	• 천연가스 시추용 감속기 매출이 2011년 약 100억 원을 기록하면서, 2012년
우림기계	에도 120억~130억 원 정도의 매출이 예상
(생산)	• 감속기 개발의 높은 진입장벽 및 1년 미만의 짧은 교체주기를 고려할 때,
	셰일가스 붐에 따른 수주 확대가 기대
	• SK는 가스탐사, LNG 생산·판매, LNG 처리·저장, NGCC 인프라 구축 등
CIA FAC	LNG 벨류 체인의 수직계열화를 형성
SK E&S	• 2013년 1월에 오성 가스복합화력발전소(800MW, LNG) 완공을 목표
(플랜트)	• 2014년까지 장흥과 문산에 각각 800MW 규모의 가스복합화력 발전소(LNG)
	건설 계획
성광벤드	• 2012년 10월 말 Sabine Pass 프로젝트 액화터미널 공사 피팅을 수주
(생산·수송)	(계약금 50억 원)
디케이락	· · · · · · · · · · · · · · · · · · ·
(생산·수송)	• 2012년 3분기까지의 북미 밸브 수출액이 104억 원으로 전년대비 약 36% 증가

³⁸⁾ 각 품목 HS Code 분석 및 무역협회 통계 자료를 활용하여 한국기계연구원 전략연구실 분석

- 가스복합화력발전 플랜트의 확대는 폐열회수장치(HRSG)39)에 대한 국내 업체의 수주 확대를 견인할 전망
 - Macoy의 조사에 따르면 우리나라의 BHI는 2012년 3분기까지 발주된 HRSG 중 15.6%를 수주하며 사상 처음으로 시장 점유율 1위 달성40)
 - 포스코 계열사인 성진지오텍 또한 2012년 8월 독일의 StandardKessel과 HSRG에 대한 기술 제휴를 통해 미국 시장 공략 추진
- □ 가스복합화력발전 플랜트의 대형화가 대형 가스터빈(100MW 이상) 수요를 확대한다면, 향후 국내 기업의 중형 가스터빈 시장 진입에도 긍정적 영향 예상
 - 이미 2005년 이후 대형 가스터빈 시장 확대에 따라 GE, 지멘스 등 글로벌 대기업이 중형 가스터빈 생산량을 줄이면서 100~200MW급의 발전소 건설에 차질이 발생41)
 - 향후 셰일가스 개발로 인한 발전 플랜트의 대형화가 이루어질 경우 중형 가스터빈 시장(30~100MW)은 후발 주자의 니치 마켓 형성이 가능
 - 이미 LNG Carrier, LNG FPSU 등이 대형화되는 추세
 - 우리나라는 100MW급 가스터빈 관련 연구개발이 추진되고 있으며, STX엔진 등은 롤스로이스와의 기술 제휴를 통해 30 · 64MW급 생산 중
 - 중형 가스터빈 개발부터 우리나라 발전사업체를 컨소시엄에 포함시켜 실증 및 상업화, 시장진입으로 이어지는 전주기적 지원의 강화 필요
- □ 중국이 셰일가스 주요 개발국으로 떠오르면서, 향후 가스 액화·발전 플랜트 및 수송용 기자재 수요에 대비한 수출 확대 전략이 필요
 - 앞서 살펴본 바와 같이 중국은 세계 최대 규모의 셰일 가스 매장량 (미국의 1.5배)을 보유
 - 2030년대 천연가스 생산량 2,500억 m³/year 중 셰일가스 비중은 약 60% 수준에 달할 전망42)

³⁹⁾ HRSG(Heat Recovery Steam Generator): 가스터빈 연소 후 배출되는 고온 배기가스(650℃)가 보유한 에너지를 회수하여 증기를 발생시키고, 발생든 증기로 스팀터빈을 구동하여 전기 생산

⁴⁰⁾ 한화투자증권 비에이치아이 분석 리포트(2012.11.09)

⁴¹⁾ 한국기계연구원, '기계기술정책 - 산업용 가스터빈 글로벌 시장 동향 분석'(2012.04)

○ 2008년 중국의 가스발전 규모는 31GW이나, 2015년까지 52GW로 확대할 예정⁴³)이며, 이는 2015년 셰일 가스 생산 목표(65억 m³/year)과도 연계

:: Vol.6, No.12 2012

기계기술정책

KIMM Technology Policy

| 발행처 | 한국기계연구원 전략기획본부 전략연구실

| 발행일 | 2012. 11

|기획·편집| 곽기호, 박효주, 정연호

정성균, 김재윤, 오승훈, 이정호

|주소| 대전광역시 유성구 가정북로 156번지

| 전화 | (042) 868 - 7682 (전략연구실)

⁴²⁾ 외교통상부 국제경제국 글로벌에너지협력센터, '글로벌 셰일가스 개발동향'(2012.09)

⁴³⁾ 하이투자증권 '산업분석 - 에너지혁명 시대 도래(2)'(2012.09.03)