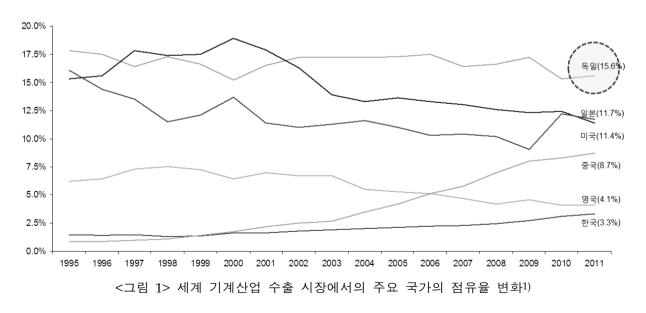


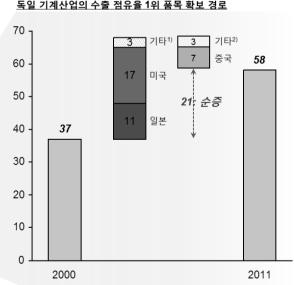
독일 기계산업 경쟁력 분석과 시사점


한국기계연구원 전략연구실

- ❶ 서론 / 1
- ② 독일 기계산업 현황 / 5
- 3 독일 기계산업 경쟁력의 원천 / 9
- 4 결론 및 시사점 / 22

1. 서론

- □ 독일 기계산업은 글로벌 금융위기 및 후발국의 추격에도 불구하고 2002년 이후 세계 기계산업 수출 1위 국가의 위상을 유지
 - 독일 기계산업은 1995년 이후 16~17%대의 수출 점유율을 꾸준히 유지
 - 1995년~2011년 독일 기계산업의 연평균 수출 증가율은 6.5%로 미국 (5.4%)과 일본(5.3%)의 수출 증가율에 비해 1%p 이상 높은 수준 기록
 - 1995년 이후 2000년대 중반까지 세계 기계산업 수출 증가율(6.5%)과 대등한 수준의 수출 증가율(6.2%)을 달성
 - * 2000년대 중반 이후 신흥국 산업화에 의한 저가 기계 수요 급증에 따라 글로벌 기계산업 수출 증가율과 독일기계산업 수출 증가율 간의 격차 확대
 - 미국, 일본은 중국 등 후발국의 추격에 따라 2000년대 중반 이후 수출 점유율이 하락세로 전환
 - 중국의 기계산업 수출 점유율은 1995년 0.9%에서 2011년 8.7%로 10배 가까이 증가하였으며, 수출 규모는 37배 가량* 증가
 - * 중국 기계산업 수출액:1995년 35억 달러 → 2011년 1,305억 달러
 - 1995년 이후 미국·일본 기계산업의 수출 점유율은 각각 3.2%p·1.3%p 감소


¹⁾ UN Comtrade SITC Rev. 3 71(716 제외), 72, 73, 74 + Rev. 4 7282 활용하여 전략연구실 작성, 괄호 안의 수치는 2011년 각 국가별 수출 점유율을 의미

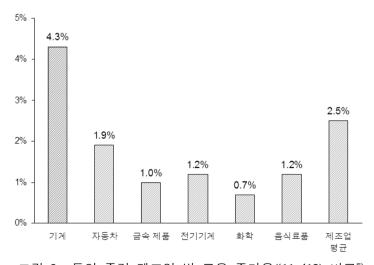
- □ 독일 기계산업의 위상은 압도적인 수출 점유율 1위 품목 보유에서 재확인
 - 2011년 현재 독일 기계산업은 SITC 4 Digit 기준 기계산업 117개 품목 중 58개 품목에서 수출 점유율 1위를 기록
 - 2000~2005년 사이 수출 점유율 1위 품목이 급격히 증가(37→64개) 하였으며, 이후 60개 가량의 수출 점유율 1위 품목을 보유한 것으로 평가
 - 일본, 미국, 중국2)의 수출 점유율 1위 품목 수를 모두 합해도 독일에 미치지 못함은 독일 기계산업의 산업 기반이 매우 넓음을 시사
 - 2000년 이후 독일 기계산업의 수출 점유율 1위 품목 수 증가는 일본과 미국에 대한 경쟁 우위 확보에 기인
 - 2000~2011년 사이 미국과 일본을 제치고 각각 17개·11개 품목에서 수출 점유율 1위를 추가 획득
 - 미국과 일본의 시장 점유율을 잠식함으로써 중국 등 신흥국의 부상에 의한 충격을 만회

기계산업 117개 품목 별 수출 점유율 1위 국가 분포

<u>독일 기계산업의 수출 점유율 1위 품목 확보 경로</u>

1) 핀란드. 싱가포르. 캐나다로 부터 수출 점유율 1위 품목 확보 2) 한국. 프랑스. 네덜란드로부터 수출 점유율 1위 품목 유출

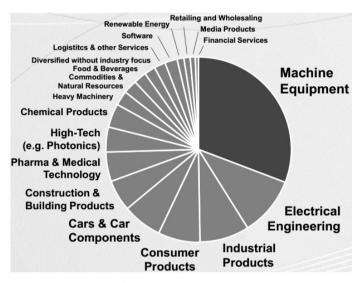
<그림 2> 기계산업 117개 품목 별 수출 점유율 1위 국가 분포(좌) 및 독일 기계산업의 수출 점유율 1위 품목 확보 경로(우)3)


²⁾ 수출 점유율 2~4위 국가

³⁾ UN Comtrade SITC Rev. 3 71(716 제외), 72, 73, 74 + Rev. 4 7282 활용하여 전략연구실 분석, 기타 국가에는 2011년 기준 네덜란드, 싱가포르, 러시아, 스위스, 스위덴 등이 포함

- 미국은 독일 외에도 중국(6개 품목) 뿐 아니라, 선진 경제권과도 비교 열위에 직면하며 수출 점유율 1위 품목 수가 1/4 이하로 감소
- 일본은 미국으로부터 2개의 수출 점유율 1위 품목을 획득하였으나 중국과 독일에 각각 2개·11개의 수출 점유율 1위 품목을 빼앗김

SITC란?


- SITC(Standard International Trade Classification)는 국가별 수출입을 분류하기 위한 상품 분류 체계로 1950년 UN에서 개발
- 2011년 현재 기계산업에 해당하는 SITC 분류는 3단위 25개 품목 산하 SITC 4단위 116개 품목과 7282(반도체 제조장비)^{*}가 해당
 - 반도체 제조장비는 SITC Rev. 4(2007년)부터 수출입 통계 집계 시작
- 기계산업에 해당하는 SITC 품목의 자세한 구성은 기계기술정책 2012년 3월호 '우리나라 기계산업 품목별 수출 시장 점유율 분석'을 참고
- □ 독일 기계산업은 독일 제조업 가운데에서도 최고 수준의 경쟁력을 확보
 - 독일 기계산업의 생산 규모는 자동차에 이어 2위를 기록하고 있으며, 고용은 1위를 기록하고 있는 핵심 산업
 - 독일 기계산업의 생산 비중은 약 12~13%를 유지하고 있으며, 이는 EU 제조업 내 기계산업 생산 비중 평균(9%)을 크게 상회하는 수준4)
 - 독일 기계산업의 고용은 2012년 현재 97.1만 명으로 전년대비 4.3% 증가하였으며, 독일 주력 제조업 가운데 가장 높은 고용 증가율 달성

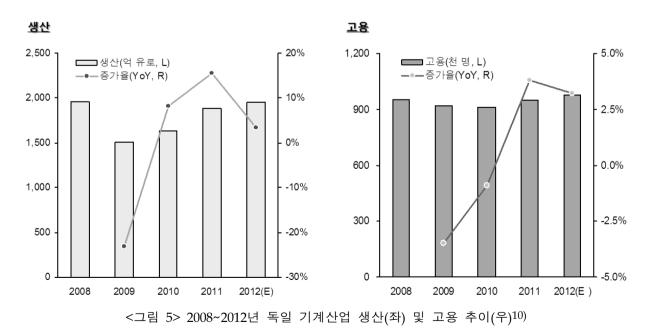
<그림 3> 독일 주력 제조업 별 고용 증가율('11~'12) 비교5

⁴⁾ 곽기호 외(2013), 'EU 기계산업 동향 분석과 경쟁력 평가', Insight ME 제5호, 한국기계연구원 참고 5) 독일 통계청

- 세계 시장을 지배하는 독일의 히든 챔피언(Hidden Champion) 가운데 30%가 기계산업에 종사
 - 히든 챔피언^{*}이란 글로벌 시장 점유율 1~3위를 달성하였음에도 불구하고 대중 인지도가 낮으며, 연매출 40억 달러 이하를 기록하는 기업
 - * 1990년 독일의 경영학자 헤르만 지몬에 의해 최초로 제안
 - 2010년 현재 독일 기계산업 내 히든 챔피언은 약 450개로 추정되며, 전체 히든 챔피언에서 차지하는 비중이 점차 증가* 추세
 - * 2008년 약 27% → 2010년 약 30%

<그림 4> 독일의 1,500개 히든 챔피언 중 기계산업의 비중(2010년)이

- □ 독일 기계산업 경쟁력의 원천에 대해 이해할 필요
 - 압도적인 경쟁 우위를 바탕으로 장기간 세계 시장 1위를 유지할 수 있었던 원동력에 대한 고찰
 - 독일 기계산업에 대한 벤치마킹 포인트를 발굴하고, 국내 기계산업에 적용할 수 있는 방안 도출
 - 고용 성장세 정체와 수익성의 양극화7)에 직면한 국내 기계산업의 문제점을 해결할 수 있는 방안 도출

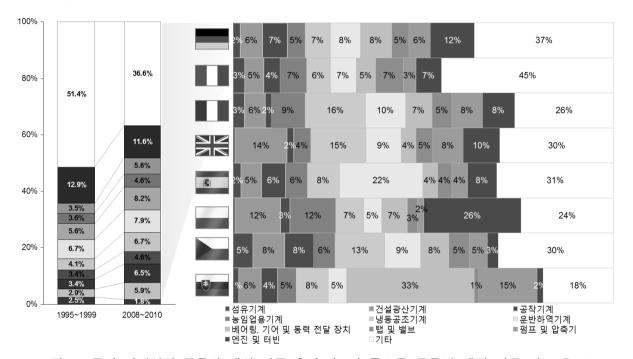

⁶⁾ Venohr(2010), "The power of uncommon common sense management principles - The secret recipe of German Mittelstand companies - Lessons for large and small companies", 2nd Global Drucker Forum Vienna 2010

^{7) 1999}년~2011년 기계산업 고용 증가율(3.8%)는 생산액 증가율(12.3%)의 1/3에도 미치지 못하며, 대기업과 중소기업의 매출액 영업이익률 격차는 2000년 -0.43%p에서 2010년 2.30%p로 확대

2. 독일 기계산업 현황

□ 개요

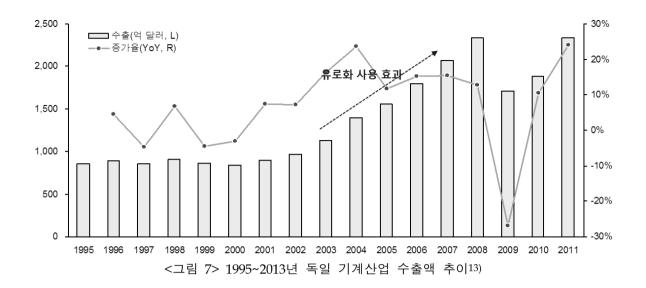
- (생산) 글로벌 경제위기의 여파로 2009년 생산액이 급감하였으나, 이후 빠른 회복세를 보이며, 사상 최대 실적을 기록한 2008년 수준을 회복
 - 2012년 독일 기계산업 생산은 1,950억 유로로 추정
 - 2009년 이후 연평균 9% 성장하였으며, 2010~2011년 사이 연평균 10% 이상 성장세 달성
 - 2010년 현재 독일 기계산업의 EU 내 생산 비중은 약 38%8)
- (고용) 생산의 급감과는 달리 2009~2010년 소폭 감소 후 신속히 회복
 - 2012년 총 고용은 98만 명으로 2008년 대비 오히려 증가
 - 불황기 인력 감축 대신 근무시간의 축소 등의 고용 유연성 정책이 고용 감소 최소화를 견인한 것으로 평가
 - 2010년 현재 독일 기계산업의 EU 내 고용 비중은 약 36%9로 생산 비중보다는 약간 낮은 수준



8) 곽기호 외(2013), 'EU 기계산업 동향 분석과 경쟁력 평가', Insight ME 제5호, 한국기계연구원 참고

⁹⁾ 전게서

- (주요 생산 품목) 엔진 및 터빈의 생산 비중이 가장 높으나, 특정 품목에 대한 편중이 없는 산업 구조가 특징
 - 1995년 이후 10대 품목의 비중이 꾸준히 증가했음에도 불구하고, 10대 품목 생산 집중도는 이탈리아와 함께 EU 최저 수준(2008~2010년 기준)
 - 독일 자동차 산업의 발전에 따른 공작기계, 베어링 등 자동차 부품 및 독일 정부 해외 자원 확보 정책에 따른 건설기계 생산 비중이 증가


<그림 6> 독일 기계산업 품목별 생산 비중 추이(좌) 및 주요국 품목별 생산 비중 비교(우)11)

- (수출) 독일 기계산업 수출액은 2002년부터 꾸준한 성장세를 보이며 2008년 약 2,338억 달러 기록
 - 기존의 품질 경쟁력에 유로화 사용에 따른 시너지 효과가 발생하면서 2003년 이후 수출이 급신장
 - 2009년 글로벌 경제 위기로 전년 대비 -26.9%의 마이너스 성장률을 기록 하였으나 2010년(10.4%), 2011년(24.0%)의 성장률을 보이며 곧바로 반등
 - 독일 기계산업의 생산 대비 수출 비중은 2011년 기준 60% 수준12)

¹⁰⁾ VDMA Mechanical Engineering - Figures and charts 2010-2013, 각년도

¹¹⁾ 곽기호 외(2013), 'EU 기계산업 동향 분석과 경쟁력 평가', Insight ME 제5호, 한국기계연구원, 생산 비중 비교는 2008년 ~2010년 실적 기준

¹²⁾ 독일 통계청

- □ (지역 별 현황) 독일 기계산업의 생산 활동은 남부의 Baden-Württemberg, Bayern 州와 서부의 Nordrhein-Westfalen 州에 집중
 - 3개 州는 독일 기계산업 생산의 72%, 고용의 72%, 사업체 수의 62.2% 차지
 - O Nordrhein-Westfalen 州는 전통적인 중공업 및 대형 기계산업 생산지이며, Baden-Württemberg, Bayern 州는 엔진·터빈·인쇄기기 산업 밀집 지역

<표 1> 지역별 독일 기계산업 현황(2012년)¹⁴⁾

지역	사업체 수(개)	노동자 수(명)	임금(백만유로)	매출(백만유로)
Nordrhein-Westfalen	1,463(23.9%)	204,312(20.4%)	9,923(21.0%)	48,524(21.7%)
Baden-Württemberg	1,446(23.7%)	295,640(29.6%)	15,066(31.9%)	65,786(29.4%)
Bayern	845(13.8%)	214,865(21.5%)	10,325(21.9%)	46,742(20.9%)
Niedersachsen	467(7.6%)	57,361(5.7%)	2,448(5.2%)	12,873(5.8%)
Hessen	380(6.2%)	43,829(4.4%)	2,016(4.3%)	10,019(4.5%)
Sachsen	376(6.2%)	38,440(3.8%)	1,312(2.8%)	7,430(3.3%)
Rheinland-Pfalz	287(4.7%)	37,475(3.7%)	1,691(3.6%)	8,156(3.6%)
Thüringen	181(3.0%)	17,869(1.8%)	567(1.2%)	3,049(1.4%)
Schleswig-Holstein	154(2.5%)	20,428(2.0%)	988(2.1%)	6,829(3.1%)
Sachsen-Anhalt	153(2.5%)	13,772(1.4%)	433(0.9%)	2,320(1.0%)
Brandenburg	93(1.5%)	6,124(0.6%)	207(0.4%)	744(0.3%)
Saarland	68(1.1%)	18,186(1.8%)	831(1.8%)	3,871(1.7%)
Berlin	58(0.9%)	10,101(1.0%)	456(1.0%)	2,342(1.0%)
Hamburg	52(0.9%)	10,386(1.0%)	558(1.2%)	2,787(1.2%)
Mechlenburg-Vorpommern	50(0.8%)	5,779(0.6%)	178(0.4%)	1,412(0.6%)
Bremen	39(0.6%)	4,946(0.5%)	236(0.5%)	751(0.3%)
Total	6,112(100%)	999,513(100%)	47,237(100%)	223,638(100%)

¹³⁾ UN Comtrade 및 한국기계연구원 자체 분석

¹⁴⁾ 독일 통계청

- □ (기업 규모별 현황) 독일 기계산업은 미텔슈탄트(Mittelstand)라 불리는 중소기업의 비중이 매우 큰 편
 - 미텔슈탄트는 종업원 수 500명 이하, 연 매출 5,000만 유로 이하, 대기업 지분이 25% 이하인 기업을 의미(독일연방경제기술부)¹⁵⁾
 - 독일 기계산업에서 미텔슈탄트는 생산의 38%, 고용의 39%를 차지하며, 핵심 역할 수행
 - 동일 기준 적용 시, 우리나라의 미텔슈탄트는 생산의 20%, 고용의 22%를 창출하는데 그치는 등 허리가 취약한 산업 구조
 - 우리나라의 기계산업은 종사자 수 100명 미만의 중소기업에 생산과 고용이 편중
 - 사업체 수에 있어서도 독일은 1,728개, 우리나라는 348개로 비중과 절대치에서 큰 차이

	_							
$< \frac{\pi}{2}$	2>	2010년	노인	하고	종사자규모	변	기계사연	田 司16)

	종사자규모 별 구분	독일	한국
	전체	5,946(100%)	8,598(100%)
	500명 이상	315(5.3%)	21(0.2%)
사업체 수(개)	100명 ~ 500명	1,728(29.1%)	348(4.0%)
	50명 ~ 100명	1,471(24.7%)	730(8.5%)
	50명 미만	2,432(40.9%)	7,499(87.2%)
	전체	928,140(100%)	282,127(100%)
	500명 이상	384,223(41.4%)	21,889(7.8%)
종사자 수(명)	100명 ~ 500명	365,723(39.4%)	61,590(21.8%)
	50명 ~ 100명	103,426(11.1%)	49,344(17.5%)
	50명 미만	74,768(8.1%)	149,304(52.9%)
	전체	186,299,257(100%)	91,127,774(100%)
생산 규모	500명 이상	91,595,446(49.2%)	18,260,266(20.0%)
	100명 ~ 500명	69,843,749(37.5%)	18,260,266(20.0%)
(천 유로, 백만 원) [*]	50명 ~ 100명	15,057,302(8.1%)	24,591,567(27.0%)
	50명 미만	9,802,760(5.3%)	33,236,732(36.5%)

^{*} 한국의 생산 규모는 출하액으로 집계

^{**} 미텔슈탄트의 고용규모 하위 기준은 없으나 본 연구에서는 100명 이상 500명 미만으로 한정하여 해석

^{15) &}quot;German Mittelstand: Engine of the German economy". Federal Ministry of Economics and Technology (BMWi). Retrieved 2010

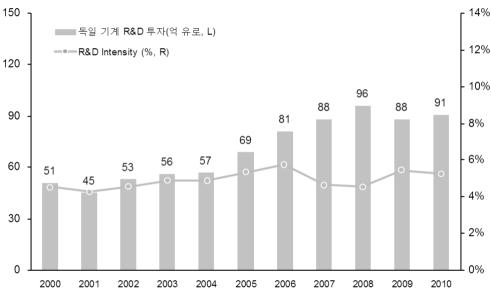
¹⁶⁾ 한국 및 독일 연방 통계청 홈페이지 참고

3. 독일 기계산업 경쟁력의 원천

① 강력한 기술·품질 경쟁력

- 수출 단가를 이용한 경쟁력 분류 결과 독일 기계산업은 전체 117개 품목 중 77개 품목에서 품질 경쟁력에 기반한 경쟁 우위를 확보
 - 58개 수출 점유율 1위 품목 중 47개가 품질 경쟁력에 기반한 경쟁우위 달성
 - 품질 경쟁 우위 확보에 따라 많은 품목에서 '수출 단가 > 수입 단가'를 유지하고 있으며 이로 인해 무역 수지 적자 품목은 30개에 불과
 - 우리나라는 가격 경쟁 우위를 확보한 품목이 가장 많은 반면, 품질 경쟁 우위 품목은 10개에 불과하며, 무역 역조 품목도 73개로 높은 편
 - * 우리나라의 무역 역조 품목 수가 많은 것은 기계 수요에 비해 산업 기반이 다양 하지 못한 것으로 이해
 - 일본은 수출 점유율 1위 품목 수는 적지만 상당 품목에서 품질·가격 경쟁력을 보유하고 있으며 무역 역조 품목이 15개에 불과한 것이 특징

<그림 8> 2010년 독일・한국・일본의 기계산업 수출 경쟁력 원천 비교17)


수출 단가 기반 경쟁력 분석 방법

- Aiginger(1997)¹⁸⁾는 수출 단가에 기반한 경쟁력 분류 방법을 최초로 제시
 - 품질 경쟁력:동일 품목 '수출 단가 > 수입 단가'이면서 '수출액 > 수입액'이면, 비싼 가격에도 불구하고 우수한 품질을 통해 수출 규모를 확대하는 '품질 경쟁력 우위'로 해석
 - 가격 경쟁력:동일 품목 '수출 단가 < 수입 단가' 이면서 '수출액 > 수입액'이면, 저렴한 가격을 기반으로 수출 규모를 확대하는 '가격 경쟁력 우위'로 해석

¹⁷⁾ UN Comtrade SITC Rev. 3 71(716 제외), 72, 73, 74 + Rev. 4 7282 활용하여 전략연구실 작성

¹⁸⁾ Aiginger(1997), "The Use of Unit Values to Discriminate between Price and Quality Competition", *Cambridge Journal of Economics*, 21(5), pp. 571-592

- R&D 투자 및 산출 모두 세계 최고 수준
 - 2010년 현재 독일 기계산업의 R&D 투자 규모는 91억 유로, R&D 집약도는 5.2%로 전세계 최고 수준
 - * 우리나라 기계산업 R&D 집약도('10년 3.1%)의 1.7배 수준
 - 2000년 이후 독일 기계산업 R&D 투자는 연평균 6.0% 증가하였으며, 2010년 기준 독일 전산업 R&D의 약 10% 차지19)
 - 높은 R&D 투자에 기반한 산업 인프라와 부품·소재 역량은 EU 기계 산업 역내의 'Best Practice'로 호평

<그림 9> 독일 기계산업 R&D 투자 규모 및 집약도 추이(2000~2010)²⁰⁾

- 독일 기계산업은 2006년~2008년 사이 총 11,571건의 다국적 특허²¹⁾*를 출원하며 세계 1위를 기록
 - * 기계산업 전 분야중 공작기계, 특수목적기계, 농기계, 엔진 및 내연기관, 냉동 공조의 5대 분야에 한해 분석
- 5대 분야에서 모두 독일 기계산업이 출원 1위를 기록하였으며, 출원 증가율 또한 세계 평균 수준을 유지

¹⁹⁾ Germany Trade & Invest(2012), 'The German Machinery & Equipment Industry - Market leadership powered by German engineering'

²⁰⁾ 전게서

²¹⁾ 본 분석에서 활용한 다국적 특허는 PCT 절차에 의해 WIPO 또는 유럽특허청(EPO)에 1번 이상 출원된 특허로 이루어진 특허 패밀리(Patent Family)로 구성되며, 특허 패밀리는 하나의 특허에 대해 다양한 시장에서의 권리를 보장하는 조항을 포함

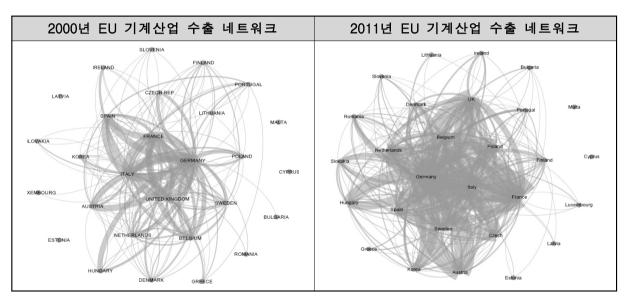
<표 3> 2006~2008년 국가별 기계산업 다국적 특허 출원 동향22)

	기계산업 주요 분야								
국가	지표	공작기계	특수목적 기계	농기계	엔진 및 내연기관	냉동공조	계		
	수	345	687	129	818	381	2,360		
프랑스	RPA	-30	-9	40	12	7	_		
	성장*	98.2	111.6	82.5	150.6	127.3	120.1		
	수	2,478	3,548	409	3,933	1,203	11,571		
독일	RPA	56	48	50	58	19	_		
	성장 [*]	118.6	112.1	103.0	154.2	115.5	125.2		
	수	476	1,078	83	449	175	2,261		
이태리	RPA	51	72	49	7	-16	_		
	성장*	127.1	116.1	94.9	129.9	154.6	122.2		
	수	238	448	34	586	194	1,500		
영국	RPA	-33	-18	-51	12	-26	_		
	성장*	91.5	83.7	54.9	150.1	86.0	101.9		
	수	4,269	7,486	913	6,704	2,693	22,065		
EU-27	RPA	26	34	42	28	9	_		
	성장*	111.4	108.4	101.5	148.2	122.6	120.3		
	수	1,708	2,431	405	2504	1,996	9,044		
미국	RPA	-33	-43	-7	-38	9	_		
	성장*	126.1	85.2	144.4	131.5	127.3	113.6		
	수	1,797	1,860	94	3,085	972	7,808		
일본	RPA	11	-32	-81	21	-22	_		
	성장*	125.4	112.7	105.9	145.9	157.1	132.2		
	수	241	447	9	237	89	1,023		
스위스	RPA	34	47	-82	-9	-35	_		
	성장*	93.4	93.2	92.3	136.5	93.7	100.6		
	수	151	263	14	231	139	798		
중국	RPA	-60	-54	-87	-61	-46	_		
	성장*	746.5	773.5	1,469.7	524.8	670	665.0		
세계	수	8,902	14,239	1,594	13,744	6,723	45,202		
^ /1	성장	120.4	110.7	111.8	145.3	135.4	125.2		

- *'99~'01 사이 출원한 다국적 특허의 수가 100일 때, '06~'08 사이 출원한 다국적 특허의 수를 의미
- ** RPA > 0은 해당 분야에서의 출원이 타 분야에 비해 강세를 보임을 의미
 - 높은 기술・품질 경쟁력을 바탕으로 유럽 최고 수준의 노동생산성 달성
 - '총부가가치/고용자 수'로 측정한 독일의 노동생산성은 2008년 67,000 유로로 EU 평균 대비 122% 수준

<표 4> 2008년 기준 EU 국가별 기계산업 노동생산성(천 유로)²³⁾

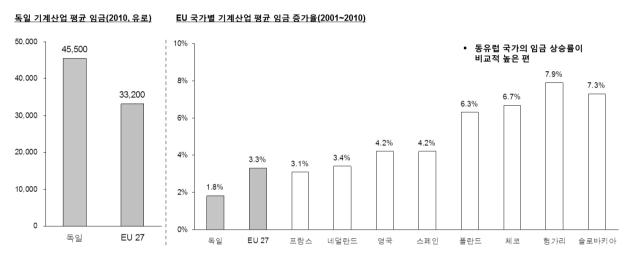
국가 구분	EU 평균	독일	이탈리아	프랑스	영국	스페인	폴란드	체코	슬로 바키아
노동생산성	55	67	57	50	59	52	26	24	17


²²⁾ 곽기호 외(2013), 'EU 기계산업 동향 분석과 경쟁력 평가', Insight ME 제5호, 한국기계연구원 참고

²³⁾ 전게서

② EU에 편입된 동유럽 국가로의 아웃소싱을 통한 원가 절감 및 고품질의 부품 조달에 성공

- EU가 동유럽으로 확장되면서 독일 기계산업은 인접 동유럽 국가로 생산시설을 이전을 통해 부품 조달 원가 절감에 성공
 - EU 기계산업의 역내 수출 네트워크 분석 결과 EU 통합 이후 독일을 중심으로 수출 네트워크가 급격히 확대·구축
 - 동유럽 통합 초기 폴란드, 체코, 헝가리 등에 머물렀던 생산 기지 이전은 최근 슬로바키아, 루마니아 및 슬로베니아, 불가리아 등으로 확대


<그림 10> 동유럽 국가의 EU 편입 전후의 기계산업 역내 수출 네트워크 비교24)

- 생산시설 이전 뿐 아니라 기술력을 보유한 동유럽 국가의 기계기업 M&A를 통해 고품질의 부품 조달 달성
 - 동유럽 국가는 사회주의 체제 시기 전문 기술 인력 양성에 집중한 바 있어 독일에 양질의 부품 조달에 필요한 기술 인력을 다수 확보
 - 체코의 Wicov(기어박스), Alta Group(공작기계 부품), 슬로바키아의 PPS(건설기계 부품) 등이 주요 부품 조달 업체
 - Gildemeister는 1999년 이후 폴란드 업체 다수를 인수하였으며, 이중 Famot Pleszow S.A는 공작기계 생산에 필요한 전체 주물의 약 40%를 공급

²⁴⁾ 전게서

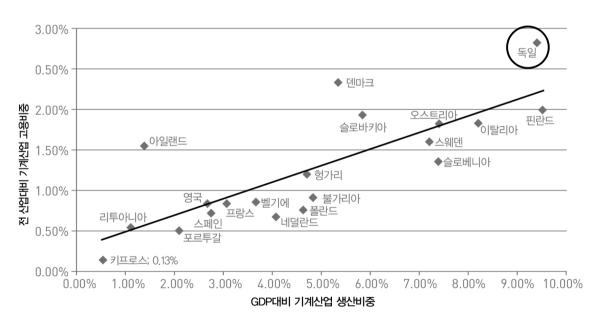
③ 적정 임금 유지 및 근무시간 단축 등의 고용 유지를 통해 실업률을 최소화하고 경기 회복에 따른 수효 확대에 효과적으로 대응

- 독일 기계산업은 1995년 당시만 하더라도 초고임금 문제에 직면하며 EU 평균 임금 수준의 180% 수준을 기록
- 이후 舊 동독지역의 상대적으로 낮은 인건비를 가진 인력의 본격 유입을 통해 임금 상승 최소화와 고용 확대의 성과를 달성
 - 2010년 독일 기계산업의 평균 임금은 4만 5천 유로로 최고 수준이나, 2001년~2010년 사이 임금 상승률은 EU 27개국 중 최하위 수준

<그림 11> 독일 기계산업과 EU 국가의 기계산업 평균 임금 및 증가율 비교25)

- 동독지역의 인력 유입에 따라 2005년 이후 독일 기계산업의 고용은 약 3만명 가량 증가하였으며, 증가율은 EU 최고 수준26)
 - * 대부분의 국가가 기계산업 고용 감소에 직면하였으나 독일은 소폭 증가

<표 5> 독일 기계산업과 EU 국가의 기계산업 고용 및 고용 증가율 비교²⁷⁾


국가 지표	독일	이태리	프랑스	영국	스페인	폴란드	체코	슬로 바키아
고용('05, 천 명)	1,020.0	430.3	250.4	225.6	126.8	144.7	130.9	36.6
고용('10, 천 명)	1,048.8	438.7	250.1	225.5	117.5	144.0	119.5	35.6
증가율('05~'10, %)	0.56%	0.39%	-0.02%	-0.01%	-1.51%	-0.10%	-1.81%	-0.55%

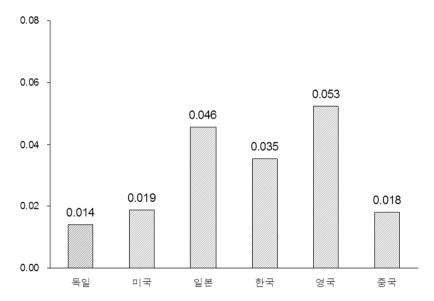
²⁵⁾ 곽기호 외(2013), 'EU 기계산업 동향 분석과 경쟁력 평가', Insight ME 제5호, 한국기계연구원 및 Germany Trade & Invest(2012), 'The German Machinery & Equipment Industry - Market leadership powered by German engineering'

²⁶⁾ 동기간 EU 기계산업의 고용은 303만 명에서 290만 명으로 -0.9% 하락

²⁷⁾ 곽기호 외(2013), 'EU 기계산업 동향 분석과 경쟁력 평가', Insight ME 제5호, 한국기계연구원 참고

- 독일 정부의 단축근무제도 실시는 숙련 인력의 해고에 따른 해외 기술 유출 및 기술 역량의 손실을 최소화하고, 경기 회복기에 효과적 대응
 - 단축근무제도(Kurzabeit)는 폐업 위기의 기업이 전일제 근로자* 해고 대신 파트타임 근로자* 고용을 지속하면 정부가 보조금을 지워하는 제도
 - * Full Time Employees, Short Time Employees
 - 본 제도에 참여하는 기업에게는 고용에 따른 사회보장비^{*}의 환급, 임금 보조 및 교육·훈련 비용 지원 등의 혜택 부여28)
 - * 건강보험, 연금 등
 - 독일 기계산업 또한 2009년 약 20만 명에 달하는 파트타임 근로자*를 고용함으로서 전일제 근로자의 해고를 최소화²⁹)
 - * 파트타임 근로자는 통상 日 5시간 정도 근무(3시간 단축 근무)
- 낮은 실업률 효과는 독일 기계산업이 GDP 대비 생산 비중에 비해 고용 비중이 비교적 높은 사실*에서도 확인
 - * EU 기계산업 내 상대 비교, 2008년 기준

<그림 12> EU 회원국별 기계산업의 고용 비중 및 GDP 비중30)


²⁸⁾ 사회보장비의 경우 최초 6개월 간은 50%, 7개월 이후에는 100% 환급되며, 파트타임 근로자 고용은 임금의 67%까지 연방고용청에서 지원받을 수 있음. 또한 근로기간 동안 교육·훈련 시 지출되는 비용은 주정부 고용청에서 부담 (출처, 이현진(2011), '최근 독일 경제 활성화의 주요 요인과 향후 전망', KIEP 지역경제포커스, Vol. 5, No. 15)

²⁹⁾ VDMA Mechanical Engineering \$\times\$ Figures and charts 2010

³⁰⁾ 곽기호 외(2013), 'EU 기계산업 동향 분석과 경쟁력 평가', Insight ME 제5호, 한국기계연구원

4 광범위한 산업 기반을 바탕으로 한 통합 솔루션 제공

- 독일 기계산업은 광범위한 산업 기반・다양한 수출 품목 구성이 특징
 - 기계산업 수출 품목별 점유율을 활용한 허핀달 지수(Herfindahl Index) 비교에서도 독일은 주요 국가 중 가장 낮은 값을 기록
 - 일본은 7284(기타 가공기계), 7282(반도체·디스플레이 장비) 부문의 높은 집중도로 인해 독일 대비 3배 이상의 허핀달 지수 기록
 - 우리나라 또한 0.035의 허핀달 지수를 기록하며 독일, 미국 등에 비해 좁은 산업 기반을 보유하는 것으로 확인

<그림 13> 주요국 기계산업의 정규화 허핀달 지수 비교(2011년 기준)31)

허핀달 지수(Herfindahl Index)

■ 허핀달 지수는 산업에서의 시장 집중도를 측정하는 방법 중 하나로 산업 내 각 기업별 시장 점유율의 제곱합으로 산출하며, 값이 클수록 특정 기업에 의한 집중도가 높음을 의미

$$-H = \sum_{i=1}^{N} S_i^2$$

- 본 연구에서는 2011년 국가 내 기계산업 수출 품목별 점유율의 제곱합을 허핀달 지수로 상정하였으며, 이를 다시 정규화(Normalize)하여 비교

-
$$Normalized\ H = \frac{(H-1/N)}{1-1/N}$$
 (N=117, SITC 4Digit 기계산업 품목 수)

³¹⁾ UN Comtrade SITC Rev. 3 71(716 제외), 72, 73, 74 + Rev. 4 7282 활용하여 전략연구실 작성.

- 독일 기계산업의 광범위한 산업 기반과 가치 사슬 간 긴밀한 유대관계는 솔루션 제공 비즈니스 모델 수립의 견인차 역할
 - 폭넓은 산업기반은 제조업 양산 라인에 대한 통합 솔루션 공급을 실현
 - 특정 회사 내에서 통합 솔루션을 통합 공급하는 경우도 있으나 가치사슬 상의 기업 간 긴밀한 유대관계를 통한 컨소시엄을 이루는 경우가 다수
 - * 독일 기계산업 중소기업과 대기업은 장기적이고 신뢰성 있는 제품·서비스 품질 공유 체제를 구축하고 있으며 수요 대기업은 자국의 공급업체 지원에 많은 관심
 - 독일은 신흥국 시장에서의 요구 및 신규 진입자와의 경쟁에 효과적으로 대응할 수 있는 완성형 공급업체(Full-Hand)로의 진화에 유리한 위치
 - ThyssenKrupp는 수동 조립, 이송 시스템, 부품 공급, 로봇, 컨트롤러, 분석 시스템 등 자동차 생산 라인 설비를 협력 기업과 공동 공급
 - MAG는 2005년 이후 약 9개의 공작기계 업체 인수를 통해 생산 공정 뿐 아니라 물류시스템의 설계 및 설치를 아우르는 통합 솔루션 제공
 - 최근에는 고객사의 인증 획득 절차 대행 및 기술 및 환경 규제 등에 대한 컨설팅 서비스도 강화하는 추세
- 다양한 제품을 생산하기보다는 기술력 기반의 틈새시장 겨냥 전략을 추진하는 기업 운영 방식도 통합 솔루션 제공의 밑거름
 - Wirtgen은 노면파쇄기, 아스팔트 냉각 밀링 머신 등 도로포장기계에 특화
 - 1947년 창립한 식기세척기 업체 Winterhalter는 호텔·레스토랑용 세척기에 집중, 시장 점유율 확대에 성공

<그림 14> Winterhalter의 틈새시장 집중 전략32)

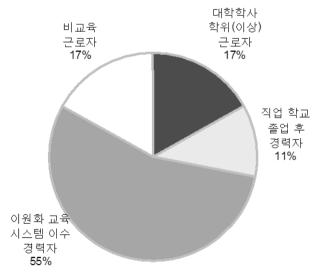
³²⁾ KOTRA(2013), '독일 강소기업 - 히든 챔피언 비결과 독일 경제권 공략방안'

5 프라운호퍼연구회 등 응용과학 연구 기관과 산업계 간의 긴밀한 협력 체계를 통한 혁신 창출

- 독일 전역에 소재한 80여개의 프라운호퍼연구회 소속 연구소 중 17개 연구소에서 기계기술과 관련한 연구 수행
- 독일 전역의 기계산업 클러스터와 프라운호퍼연구회 간 연계는 독일 기계기술의 발전 및 경쟁력 향상에 큰 역할

<표 6> 프라운호퍼연구회 소속 연구소 중 기계분야 주요 연구소33)

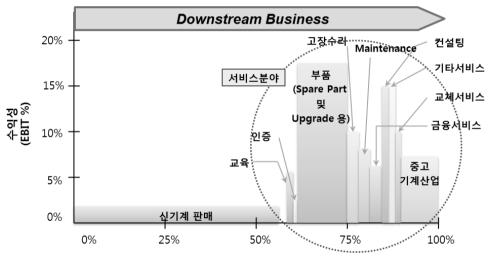
번호	연구소명(약자)	소재지(州)	주요 연구 분야
1	Applied Optics and Precision Engineering(IOF)	Jena (Thüringen)	■ 나노·마이크로 구조 ■ 광학 및 포토닉스 재료 ■ 표면 코팅 및 기능화 ■ 다이아몬드 정밀 가공 ■ 극초단파 레이저 펄스 이용 재료 가공 ■ 레이저 소스 개발
2	Electron Beam and Plasma Technology(FEP)	Dresden (Sachsen)	 ● 전자빔 기술 ● 전자소자 스퍼터링 기술 ● 플라즈마 증착기술 ● High Rate(고주파, 코팅) PECVD 기술
3	Electronic Nano Systems(ENAS)	Chemnitz (Sachsen)	■ 실리콘 기반 나노·마이크로 시스템 ■ 폴리머 기반 나노·마이크로 시스템 ■ 기능성 부품 인쇄 기술
	Environmental, Safety and Energy Technology(UMSICHT)	Oberhausen (Berlin)	■ 실리콘·폴리머 기반 나노·마이크로 시스템 ■ 기능성 부품 인쇄 기술
4	UMSICHT, Sulzbach-Rosenberg branch	Sulzbach- Rosenberg (Bavaria)	■ 열에너지 저장 ■ 바이오 오일 및 정제, 공정 고도화
5	Factory Operation and Automation(IFF)	Magdeburg (Sachsen- Anhalt)	 인간 로봇 상호작용 안전 기술 용접 기술 및 기계 규제 관련 안전 기술 의료 자동화 기술·시뮬레이션 기술 유동층 연소 기술 로봇 및 FA 최적화 기술
	High-Speed Dynamics, Ernst-Mach-Institut(EMI)	Freiburg (Baden- Württemberg)	■ 도시·빌딩 방재 기술 ■ 건축 재료 개발 ■ 터널 내 안전 기술
6	EMI Efringen-Kirchen branch	Efringen- Kirchen (Baden- Württemberg)	● 우주 잔해 물지 탐지● 위성의 고속화에 따른 취약성 평가● 충돌 센터● 자동차용 복합재료 설계·개발


³³⁾ 프라운호퍼연구회 홈페이지

번호	연구	'소명(약자)	소재지(州)	주요 연구 분야
7		Technology(ILT)	Aachen (North Rhine- Westphalia)	■ 레이저 및 광학 ■ 의료 기술 및 바이오포토닉스 ■ 레이저 측정 기술 및 EUV 기술
8		ools and Forming nnology(IWU)	Chemnitz (Sachsen)	■ 자동차 산업 응용기술 ■ 그린 차체 기술 ■ 그린 파워트레인 기술
	Dres	sden branch	Dresden (Sachsen)	■ 자원을 효율적 사용하는 생산 시스템 ■ 지능형 유지보수를 위한 의사결정지원시스템
9		ng Engineering and omation(IPA)	Stuttgart (Baden-Württe mberg)	 디지털 공장 공장 설계 및 생산 최적화 재제조, 로봇시스템 외골격 및 모션 시스템 생산 및 공정 자동화 초청정 기술 및 마이크로생산기술
	Mfg. Technology	Bonding Technology and Surfaces	Bremen	■ 소결 및 복합재, 세포 금속 재료 ■ 분말 기술
10	and Advanced Materials	Powder Metallurgy and Composite Materials	Dresden (Sachsen)	 캐스팅 기술 접착 기술 표면 기술
	(IFAM)	Shaping and Functional Materials	Bremen	■ 섬유 복합재
11	Mechanics	of Materials(IWM)	Freiburg (Baden- Württemberg) ■ 나노 인덴테이션(Indentation) ■ 역학 실험, 파괴역학	
	На	alle branch	Halle (Sachsen- Anhalt)	■ X-ray 회절 ■ 라만 분광법 기술
12	Non-Destru	uctive Testing(IZFP)	Saarbrücken (Saarland)	 ■ 나노분석 및 테스트 ■ 건강 모니터링
	Dres	sden branch	Dresden (Sachsen)	■ 시스템 엔지니어링 및 수명주기 관리
13		Systems and Design nnology(IPK)	Berlin	조립 및 코팅 기술 자동화, 마이크로 생산 기계 및 플랜트 유지보수
14	Production	n Technology(IPT)	Aachen (Nordrhein- Westfalen)	 정밀 가공 및 광학, 자동화 기술 절단 기술, 레이저 재료 가공 기술 CAx 기술, 코팅 기술 기술 예측 및 기획
15	Reliability a	and Microintegration (IZM)	Berlin	■ 신뢰성 기술 ■ 스마트 그리드 ■ 사이버 물리 시스템
16		urability and System ability (LBF)	Darmstadt (Hessen)	■ 수송기계·플랜트 신뢰성 기술
17	Wind Energy and Energy System Technology(IWES)		Bremer haven (Nieder sachsen)	■ 90m 길이의 로터 블레이드 기술 ■ 풍력단지 조성기술 및 풍력자원 조사 기술 ■ 바이오가스의 메탄화 기술
		and Energy System	Kassel (Hessen)	

6 엔지니어를 중시하는 산업 문화

- 이론 교육과 실습을 병행하는 이원화 교육 시스템을 통한 'German Engineering' 강조
 - 독일은 중고교생(16~19세)을 대상으로 기계공학 이론 교육 이외에 기업체 에서 실습 교육을 병행하는 이원화 교육(Dual Education)을 제공
 - * 2일은 직업 학교(Vocational School)에서 수업을 듣고, 3~4일은 기업체에서 실습
 - 이원화 교육을 마치면 일정 시험을 거쳐 국가 공인 자격증을 취득하고 정식으로 취업함으로서 마이스터(Meister)의 지위를 획득34)
 - 기업체 실습이 없는 직업 학교(Vocational School)를 졸업하고 바로 취직하는 경우도 있으나 이는 소수에 불과
- 대학은 강력한 산·학 연계를 통해 R&D 인력을 집중 육성35)
 - 대학의 정교수는 대부분 연구소장을 겸하고 있으며, 연구소 내 연구원 및 대학원생과 공동 연구를 수행함으로써 기업이 필요로 하는 기술 개발
 - 연 6만명 규모의 기계공학전공 졸업생이 기업과 연구소로 취업하고 있으며, 현재 독일 기계산업 내 대학 학사 학위 이상 소지자는 17%


<그림 15> 독일 기계산업 근로자 구성36)

³⁴⁾ 숙련공 중에서도 원하는 경우 대학 입학 자격 및 대학 공부를 이수할 수 있는 기회 부여하며, 약 20% 가량의 인력이 대학에 진학

³⁵⁾ 매년 5만 명의 학생이 대학교의 기계공학과에 입학하고 있으며, 독일 전역의 기계공학전공 학생(대학원 포함) 수는 총 47.3만 명으로 파악

³⁶⁾ Germany Trade & Invest(2013), 'Industry Overview - The Machinery & Equipment Industry in Germany'

- 非공학 직군에서도 높은 엔지니어의 종사 비중을 바탕으로 혁신 역량을 지속 제고하고, 서비스 등 하위 시장에서의 비즈니스 모델을 견고히 구축
 - 독일 기계산업의 노동 인력 중 엔지니어가 차지하는 비중은 1982년 7%에서 2010년 16%로 두 배 이상 증가
 - 엔지니어의 16% 가량은 영업, 8%는 생산 및 서비스 비즈니스, 9%는 관리자로 종사하고 있으며, 최고 경영자의 60% 이상이 엔지니어 출신
 - 非공학 직군에서의 엔지니어 종사는 기술 컨설팅, 금융서비스, 교육훈련 등 다양한 하위 시장에서의 고수익 서비스 창출에 긍정적 역할
 - * 독일 기계산업은 2011년 현재 서비스 부문으로부터 매출의 40%를 획득하고 있으며, 수익률 또한 기계판매에 비해 4~9배 높은 수치를 기록

<그림 16> 독일 기계산업의 영역별 매출 비중 및 수익성37)

○ 독일 정부 또한 연방교육연구부(BMBF)를 중심으로 1990년대 후반부터 제품과 서비스 융합을 위한 R&D 투자를 강화

기계산업을 매력적인 투자처로 인식하는 금융 환경

- 사모펀드 등은 기업 성장 후 재매각 추진의 관점에서 기계산업의 투자 매력도를 매우 높게 평가
 - 사모펀드는 공장 증설, 신제품 개발 등에 필요한 자금 조달에 기여
 - 2011년 독일 기계산업은 전체 제조업 중 4위의 투자 매력도 달성38)

³⁷⁾ 곽기호 외(2012), '서비스화를 통한 우리나라 기계산업의 혁신 전략 연구', Insight ME 제4호, 한국기계연구원

- 기계산업 투자를 촉진하는 제도를 마련하고, FDI의 유입을 확대
 - 독일의 경우 외국 기업의 자본 거래, 환전, 부동산 구매, 수익의 해외 이전, 외환 조달 등의 제한을 철폐
 - 2008년~2012년 사이 독일 기계산업은 총 369건의 FDI를 유치하며, EU 기계산업의 FDI 최대 유입국가로 선정

FDI 유입국	2008	2009	2010	2011	2012	계('08~'12)
독일	81	70	95	86	37	369
- 영국	60	69	70	62	51	312
러시아	35	29	40	37	22	162
프랑스	60	31	22	20	15	148
스페인	26	23	18	15	28	110
폴란드	22	16	16	15	13	82
네덜란드	10	14	11	11	17	63
체 코	10	9	8	13	9	49
루마니아	14	7	6	12	13	52
이태리	12	8	8	14	7	49
기타	116	69	100	94	82	461
계	446	345	394	379	294	1,858

<표 7> EU 기계산업의 주요 FDI 현황(건 수)39)

- 은행은 산업 자본에 능동 참여, 장기적인 관계 형성에 기반한 대출 및 다양한 금융 서비스 제공
 - 1990년대 이전까지 은행이 기업의 지배구조에서 주요 주주로 참여한 이력에 따라 장기적인 관점에서 기업에 자본 조달
 - 각 주별 저축은행, 주립은행 및 지역별 신용협동조합 등 지역 밀착형 은행 시스템은 장기적 관점에서 중소기업을 지원

<표 8> 독일 은행 종류별 역할과 중소기업 지원40)

은행 종류	특징 및 역할
저 축 은 행	소재지역의 경제활성화와 일자리 창출, 소액 저축 보유자의 이익 증진장기금융 위주 운영, 중소기업 금융에서 중요한 비중 차지
주립은행	■ 주정부 및 지역 내 저축은행 협회 소유 ■ 가계 및 중소기업 대상 소매금융, 타 지역 은행과는 경쟁 금지
신용협동조합은행	■ 조합원 지분에 의해 예금 및 대출 서비스 운영 ■ 농업 및 수공업 대상 서민 금융 수행

³⁸⁾ 곽기호 외(2013), 'EU 기계산업 동향 분석과 경쟁력 평가', Insight ME 제5호, 한국기계연구원

³⁹⁾ Germany Trade & Invest(2013), 'Industry Overview - The Machinery & Equipment Industry in Germany'

⁴⁰⁾ 노영진(2012), '독일 경제와 은행시스템 분석 및 시사점', KIET 산업경제

4. 결론 및 시사점

□ 장기간 한우물 파기 전략 강화

- 고객과의 긴밀한 관계 정립이 중요하면서도 기술 진보의 누적성이 높은 기계산업의 기술 혁신 특성을 고려한 경영 전략 필요
 - 원가 경쟁력으로는 중국 등 신흥국과의 경쟁에서 이기기 어려움을 인정
 - 장기 기술 축적이 필요한 분야 및 이에 기반한 응용 개발에 집중할 필요
- 다양한 전방 산업으로의 적용할 수 있는 플랫폼 기술을 구축
 - 플랫폼 기술이란 공통 기반으로 활용할 수 있으면서도 다양한 기회를 포착해서 새로운 시장에 필요한 제품·서비스를 만들 수 있는 기술
 - 3M의 45개 플랫폼 기술, SC Johnson(에어로졸), 닛토덴코(점착), 코닝 (유리), HP(잉크젯) 등의 플랫폼 기술 보유 사례를 적극 벤치마킹

□ 엔지니어를 우대하는 기업 문화 조성

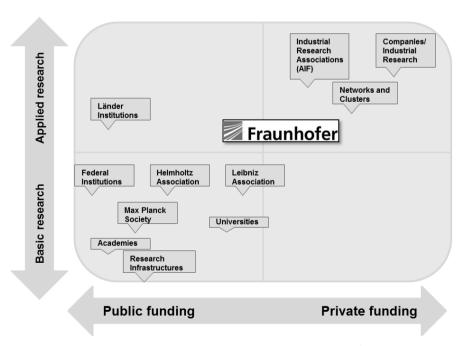
- 非공학 직군에서도 엔지니어의 종사 비중을 높이고, 우수한 엔지니어에 대한 교육·훈련 프로그램 강화가 필요
 - 非공학 직군에서의 엔지니어의 종사는 제조업의 서비스화 등 다양한 비즈니스 기회를 포착할 수 있는 가능성을 확대
 - 엔지니어에 대한 경영학 교육 강화를 통해 향후 최고경영자가 갖추어야 할 자질과 역량을 지속 배양할 필요
- 정밀공작기계공, 금속생산공 등 숙련공 분야의 장인에게는 후계자 양성 권한, 생산 현장 총책임 권한, 높은 연봉 등의 우대 제도 마련
 - 마이스터가 보유한 기술을 사내에 계승, 발전시킬 수 있는 펠로우 (Fellow) 제도 등을 마련
 - * 기계산업의 기술 체화·축적은 제품보다는 기술자에 의해 달성됨을 이해
 - 마이스터가 보유한 기술을 사내에 계승, 발전시킬 수 있는 펠로우 (Fellow) 제도 등을 마련

□ 고용 유지 확보를 위한 정부의 정책 마련

- 경기 불황에 따른 제조업 종사자의 저부가 서비스로의 이직이 국가 기술 역량 축적과 생산성에 심각한 손실을 야기⁴¹)
- '실업자 수 감축' 이라는 목표 수립 및 이에 따른 시간제 일자리 활성화, 노동시가 단축 등의 일자리 나누기 정책을 적극 시행
 - 일자리 나누기 정책은 장기간에 걸쳐 일관성 있게 추진
 - 기업들이 고용을 축소하지 않도록 정책적 보완*도 동시에 마련할 필요 * 건강보험, 연금 등의 재정적 지원, 임금 보조금 등
 - 캠페인 전개를 통해 일시적인 고통 분담이 향후 더 큰 효익을 창출 할 수 있음을 고용주와 근로자에게 인식
- 직업과 교육훈련, 자격이 긴밀하게 연계될 수 있는 전문인력 양성 제도 마련
 - 교육훈련과 자격 종목을 일치시켜 교육 효과를 극대화
 - 특정 자격을 획득하면 해당 산업 뿐 아니라 유관 산업에서도 자격 능력을 인정해줌으로서 공통 핵심기술 기반을 강화
 - * 예) 전자소자 제조장비의 플라즈마 응용기술, 기계가공 제조장비의 위치 제어 기술 및 정밀 스테이지 기술 등

□ 정부의 장기적인 산업 정책 및 혁신 클러스터 조성 노력

- 기계산업은 장기적인 투자와 기술 축적이 필요한 산업이며, 이에 따라 독일 정부 또한 그간 기계산업 경쟁력 강화에 적극 개입
 - 기계산업 내의 수많은 미텔슈탄트들의 경쟁력은 정부 주도의 산업 클러스터 조성에 따른 자원과 정보 공유에 의해 달성
 - 클러스터 내의 미텔슈탄트들은 숙련기능인력 양성에 공동으로 협력 하거나, 기술 표준화, 규제 대응 등에 능동적으로 참여
- 독일 기계산업의 최대 강점 중 하나인 광범위한 산업 기반을 벤치마킹 하기 위해서는 꾸준한 정책 지원이 필수


⁴¹⁾ 한국은행(2013), '산업 간 노동이동성 분석 및 시사점' 참고

- 기계(연) 등 기계 관련 출연(연) 또한 기계산업 클러스터의 혁신역량 강화를 위해 보다 적극적인 활동이 필요
 - 대기업과 중소기업이 요구하는 출연(연)의 역할이 다름을 인식하고 각 기업 규모별 맞춤형 활동을 전개

<班 9>	기업	규모별	출연(연)	역할에	대한	요구42)

기업 규모	출연(연)에 대한 요구
대기업	■ 기술 및 산업 동향에 대한 정보 제공 ■ 정보와 지식 허브 역할을 통한 공동 R&D 활동과 연계
중기업	 중기업의 중견기업 성장을 위한 기획 및 R&D 정보 제공 수요자 지향 기술 마케팅을 통한 보유 기술 사업화 촉진 공동 R&D를 통한 기술 경쟁력 강화와 인력 교류
소기업	■ 전담 기술코디네이터 지정, 현장애로기술 단기기술 지도 등 ■ 정부 R&D 사업 공동 지원 및 인센티브 부여

- 응용연구와 원천기술 확보 등을 겸비하는 등 기계분야 출연(연)의 고유 미션 정립
 - * 예) 프라운호퍼연구회는 응용연구와 기초연구의 겸비, 공공 펀드와 기업 수탁 연구의 겸비를 통한 고유의 포지셔닝을 획득

<그림 17> 프라운호퍼연구회의 포지셔닝43)

⁴²⁾ 곽기호, 정성균, 조현(2013), "중소 자본재 기업 개방형 혁신에서의 정부출연(연)의 역할 탐색:일반기계산업을 중심으로", 중소기업연구 제35권 3호, pp. 1~24

⁴³⁾ 한독컨퍼런스, 2013년 10월 8일 개최, Daniel Bloemers FhG MOEZ 디렉터, 발표자료

기계기술정책

Technology Policy for Mechanical Engineering

:: No. 72 독일 기계산업 경쟁력 분석과 시사점

| **발행인** | 김석준

| **발행처** | 한국기계연구원 전략기획본부 전략연구실

| 발행일 | 2013.11

| 기획·편집 | 곽기호, 박성우, 이운규, 이상민, 이정호

| **주소** | 대전광역시 유성구 가정북로 156번지

│ **전화** │ (042) 868-7682(전략연구실)